コード例 #1
0
    def apply(self, actions: SimulatorAction):

        self.writer.write_action_result(self.env, actions)
        # increase performance when debug logging is disabled
        if logger.isEnabledFor(logging.DEBUG):
            logger.debug(f"SimulatorAction: %s", repr(actions))

        # Get the new placement from the action passed by the RL agent
        # Modify and set the placement parameter of the instantiated simulator object.
        self.simulator.params.sf_placement = actions.placement
        # Update which sf is available at which node
        for node_id, placed_sf_list in actions.placement.items():
            available = {}
            # Keep only SFs which still process
            for sf, sf_data in self.simulator.params.network.nodes[node_id][
                    'available_sf'].items():
                if sf_data['load'] != 0:
                    available[sf] = sf_data
            # Add all SFs which are in the placement
            for sf in placed_sf_list:
                available[sf] = available.get(sf, {'load': 0.0})
            self.simulator.params.network.nodes[node_id][
                'available_sf'] = available

        # Get the new schedule from the SimulatorAction
        # Set it in the params of the instantiated simulator object.
        self.simulator.params.schedule = actions.scheduling

        # reset metrics for steps
        metrics.reset_run()

        # Run the simulation again with the new params for the set duration.
        # Due to SimPy restraints, we multiply the duration by the run times because SimPy does not reset when run()
        # stops and we must increase the value of "until=" to accomodate for this. e.g.: 1st run call runs for 100 time
        # uniits (1 run time), 2nd run call will also run for 100 more time units but value of "until=" is now 200.
        runtime_steps = self.duration * self.run_times
        logger.debug("Running simulator until time step %s", runtime_steps)
        self.env.run(until=runtime_steps)

        # Parse the NetworkX object into a dict format specified in SimulatorState. This is done to account
        # for changing node remaining capacities.
        # Also, parse the network stats and prepare it in SimulatorState format.
        self.parse_network()
        self.network_metrics()

        # Increment the run times variable
        self.run_times += 1

        # Record end time of the apply round, doesn't change start time to show the running time of the entire
        # simulation at the end of the simulation.
        self.end_time = time.time()
        metrics.running_time(self.start_time, self.end_time)

        # Create a new SimulatorState object to pass to the RL Agent
        simulator_state = SimulatorState(self.network_dict,
                                         self.simulator.params.sf_placement,
                                         self.sfc_list, self.sf_list,
                                         self.traffic, self.network_stats)
        self.writer.write_state_results(self.env, simulator_state)
        return simulator_state
コード例 #2
0
def main():
    args = parse_args()
    metrics.reset()
    start_time = time.time()
    logging.basicConfig(level=logging.INFO)

    # Create a SimPy environment
    env = simpy.Environment()

    # Seed the random generator
    random.seed(args.seed)
    numpy.random.seed(args.seed)

    # Parse network and get NetworkX object and ingress network list
    network, ing_nodes = reader.read_network(args.network,
                                             node_cap=10,
                                             link_cap=10)

    # Getting current SFC list, and the SF list of each SFC, and config

    # use dummy placement and schedule for running simulator without algorithm
    # TODO: make configurable via CLI
    sf_placement = dummy_data.triangle_placement
    schedule = dummy_data.triangle_schedule

    # Getting current SFC list, and the SF list of each SFC, and config
    sfc_list = reader.get_sfc(args.sf)
    sf_list = reader.get_sf(args.sf, args.sfr)
    config = reader.get_config(args.config)

    # Create the simulator parameters object with the provided args
    params = SimulatorParams(network,
                             ing_nodes,
                             sfc_list,
                             sf_list,
                             config,
                             args.seed,
                             sf_placement=sf_placement,
                             schedule=schedule)
    log.info(params)

    if args.trace:
        trace = reader.get_trace(args.trace)
        TraceProcessor(params, env, trace)

    # Create a FlowSimulator object, pass the SimPy environment and params objects
    simulator = FlowSimulator(env, params)

    # Start the simulation
    simulator.start()

    # Run the simpy environment for the specified duration
    env.run(until=args.duration)

    # Record endtime and running_time metrics
    end_time = time.time()
    metrics.running_time(start_time, end_time)

    # dump all metrics
    log.info(metrics.metrics)
コード例 #3
0
    def init(self,
             network_file,
             service_functions_file,
             config_file,
             seed,
             trace=None,
             resource_functions_path=""):

        # Initialize metrics, record start time
        metrics.reset()
        self.run_times = int(1)
        self.start_time = time.time()

        # Parse network and SFC + SF file
        self.network, self.ing_nodes = reader.read_network(network_file,
                                                           node_cap=10,
                                                           link_cap=10)
        self.sfc_list = reader.get_sfc(service_functions_file)
        self.sf_list = reader.get_sf(service_functions_file,
                                     resource_functions_path)
        self.config = reader.get_config(config_file)

        # Generate SimPy simulation environment
        self.env = simpy.Environment()

        # Instantiate the parameter object for the simulator.
        self.params = SimulatorParams(self.network, self.ing_nodes,
                                      self.sfc_list, self.sf_list, self.config,
                                      seed)

        # Trace handling
        if trace:
            trace = reader.get_trace(trace)
            TraceProcessor(self.params, self.env, trace)

        self.duration = self.params.run_duration
        # Get and plant random seed
        self.seed = seed
        random.seed(self.seed)
        numpy.random.seed(self.seed)

        # Instantiate a simulator object, pass the environment and params
        self.simulator = FlowSimulator(self.env, self.params)

        # Start the simulator
        self.simulator.start()

        # Run the environment for one step to get initial stats.
        self.env.step()

        # Parse the NetworkX object into a dict format specified in SimulatorState. This is done to account
        # for changing node remaining capacities.
        # Also, parse the network stats and prepare it in SimulatorState format.
        self.parse_network()
        self.network_metrics()

        # Record end time and running time metrics
        self.end_time = time.time()
        metrics.running_time(self.start_time, self.end_time)
        simulator_state = SimulatorState(self.network_dict,
                                         self.simulator.params.sf_placement,
                                         self.sfc_list, self.sf_list,
                                         self.traffic, self.network_stats)
        # self.writer.write_state_results(self.env, simulator_state)
        return simulator_state
コード例 #4
0
    def init(self, seed):

        # reset network caps and available SFs:
        reader.reset_cap(self.network)
        # Initialize metrics, record start time
        metrics.reset_metrics()
        self.run_times = int(1)
        self.start_time = time.time()

        # Parse network and SFC + SF file

        # Generate SimPy simulation environment
        self.env = simpy.Environment()

        self.params = SimulatorParams(self.network, self.ing_nodes,
                                      self.sfc_list, self.sf_list, self.config)

        # Instantiate the parameter object for the simulator.
        if self.params.use_states and 'trace_path' in self.config:
            logger.warning(
                'Two state model and traces are both activated, thi will cause unexpected behaviour!'
            )

        if self.params.use_states:
            if self.params.in_init_state:
                self.params.in_init_state = False
            else:
                self.params.update_state()

        self.duration = self.params.run_duration
        # Get and plant random seed
        self.seed = seed
        random.seed(self.seed)
        numpy.random.seed(self.seed)

        # Instantiate a simulator object, pass the environment and params
        self.simulator = FlowSimulator(self.env, self.params)

        # Start the simulator
        self.simulator.start()
        # Trace handling
        if 'trace_path' in self.config:
            trace_path = os.path.join(os.getcwd(), self.config['trace_path'])
            trace = reader.get_trace(trace_path)
            TraceProcessor(self.params, self.env, trace, self.simulator)

        # Run the environment for one step to get initial stats.
        self.env.step()

        # Parse the NetworkX object into a dict format specified in SimulatorState. This is done to account
        # for changing node remaining capacities.
        # Also, parse the network stats and prepare it in SimulatorState format.
        self.parse_network()
        self.network_metrics()

        # Record end time and running time metrics
        self.end_time = time.time()
        metrics.running_time(self.start_time, self.end_time)
        simulator_state = SimulatorState(self.network_dict,
                                         self.simulator.params.sf_placement,
                                         self.sfc_list, self.sf_list,
                                         self.traffic, self.network_stats)
        logger.debug(f"t={self.env.now}: {simulator_state}")

        return simulator_state