コード例 #1
0
    def __init__(self, copula_spec):
        """Init class."""
        version = distribute_copula_spec(copula_spec, 'version')
        self.attr = dict()
        self.attr['version'] = version

        # Assign correct monitoring and attribute checks function.
        if version in ['scaled_archimedean']:
            self._logging = partial(log_scaled_archimedean, self)
            self._check_attributes = partial(check_attributes_scaled_archimedean, self)
        elif version in ['nonstationary']:
            self._logging = partial(log_nonstationary, self)
            self._check_attributes = partial(check_attributes_nonstationary, self)
        elif version in ['warmglow']:
            self._logging = partial(log_warmglow, self)
            self._check_attributes = partial(check_attributes_warmglow, self)
        else:
            raise NotImplementedError

        # Handle other attributes
        if version in ['scaled_archimedean']:
            args = ['r', 'bounds', 'delta', 'u', 'generating_function', 'a', 'b', 'marginals']
            r, bounds, delta, u, generating_function, a, b, marginals = \
                distribute_copula_spec(copula_spec, *args)

            marginal_utility = []
            for i, marginal in enumerate(marginals):
                if marginal == 'power':
                    marginal_utility += [PowerCls(r[i], a, b, bounds[i])]
                elif marginal == 'exponential':
                    marginal_utility += [ExponentialCls(r[i], a, b, bounds[i])]

            self.attr['x_uniattribute_utility'] = marginal_utility[0]
            self.attr['y_uniattribute_utility'] = marginal_utility[1]
            self.attr['bounds'] = bounds
            self.attr['delta'] = delta
            self.attr['u_1'] = u[0]
            self.attr['u_2'] = u[1]

            copula = ScaledArchimedeanCls(generating_function, u[0], u[1], delta)

        elif version in ['nonstationary', 'warmglow']:
            args = ['alpha', 'beta', 'gamma', 'discount_factors', 'y_scale',
                    'unrestricted_weights', 'discounting']
            alpha, beta, gamma, discount_factors, y_scale, unrestricted_weights, discounting = \
                distribute_copula_spec(copula_spec, *args)

            self.attr['unrestricted_weights'] = unrestricted_weights
            self.attr['discount_factors'] = discount_factors
            self.attr['discounting'] = discounting
            self.attr['y_scale'] = y_scale
            self.attr['alpha'] = alpha
            self.attr['gamma'] = gamma
            self.attr['beta'] = beta

            if version in ['nonstationary']:

                copula = NonstationaryUtilCls(
                    alpha, beta, gamma, discount_factors, y_scale, unrestricted_weights,
                    discounting)
            elif version in ['warmglow']:
                # Handle version-specifc parameters
                args = ['warmglow_type']
                warmglow_model = distribute_copula_spec(copula_spec, *args)

                copula = WarmglowUtilCls(
                    alpha, beta, gamma, discount_factors, y_scale, unrestricted_weights,
                    discounting, warmglow_model)
            else:
                raise NotImplementedError
        else:
            raise NotImplementedError

        self.attr['copula'] = copula
        self._check_attributes()
        self._logging()
コード例 #2
0
np.random.seed(123)

for _ in range(10):
    x, y, is_normalized, copula_spec = generate_random_request(
        {'version': 'nonstationary'})

    # copula_spec['marginals'] = ['exponential', 'exponential']
    # copula_spec['r'] = [-5, -5]
    # copula_spec['bounds'] = [500, 500]

    # print(is_normalized, 'out')
    copula = UtilityCopulaCls(copula_spec)
    util = copula.evaluate(x, y, is_normalized)

    alpha, beta, gamma, y_scale, version = \
        distribute_copula_spec(copula_spec, 'alpha', 'beta', 'gamma', 'y_scale', 'version')

    print('version: {}'.format(version))
    print('alpha: {0:.2f}, beta: {1:.2f}, gamma: {2:.2f}, y_scale: {3:.2f}'.
          format(alpha, beta, gamma, y_scale))
    print('x: {0:.2f}, y: {1:.2f}, utility: {2:.2f}.'.format(x, y, util))

    # Don't expect monotonicity here
    print(copula.evaluate(x, y))
    print(copula.evaluate(x, y, t=0))
    print(copula.evaluate(x, y, t=1))
    print(copula.evaluate(x, y, t=3))
    print(copula.evaluate(x, y, t=6))
    print(copula.evaluate(x, y, t=12))
    print(copula.evaluate(x, y, t=24))