コード例 #1
0
ファイル: grad_fn.py プロジェクト: E1eveNn/xshinnosuke
def ReLUBackward(outputs: Tensor):
    if 'inplace' in outputs.cache and outputs.cache['inplace']:
        mask = outputs.cache['mask']
        outputs.grad.eval[mask] = 0
        outputs.grad_fn = outputs.cache['grad_fn'].pop()
        outputs.grad_fn(outputs)
    else:
        inputs, = outputs.in_bounds
        if inputs.requires_grad:
            grad = outputs.grad.eval.copy()
            grad[inputs.eval < 0] = 0
            GLOBAL.np.add(inputs.grad.eval, grad, out=inputs.grad.eval)
コード例 #2
0
ファイル: grad_fn.py プロジェクト: E1eveNn/xshinnosuke
def MSELossBackward(outputs: Tensor):
    y_pred, y_true = outputs.in_bounds
    gradients =GLOBAL.np.multiply(GLOBAL.np.subtract(y_pred.eval, y_true.eval), outputs.grad.eval)
    if outputs.cache['reduction'] == 'mean':
        GLOBAL.np.divide(gradients, GLOBAL.np.prod(y_pred.shape), out=gradients)
    if y_true.requires_grad:
        if y_true.grad is None:
            y_true.grad = Tensor(-gradients)
        else:
            GLOBAL.np.add(y_true.grad.eval, -gradients, out=y_true.grad.eval)

    if y_pred.requires_grad:
        if y_pred.grad is None:
            y_pred.grad = Tensor(gradients)
        else:
            GLOBAL.np.add(y_pred.grad.eval, gradients, out=y_pred.grad.eval)
コード例 #3
0
ファイル: grad_fn.py プロジェクト: E1eveNn/xshinnosuke
def MAEBackward(outputs: Tensor):
    y_pred, y_true = outputs.in_bounds
    pos = GLOBAL.np.where((y_pred.eval - y_true.eval) < 0)
    mask = GLOBAL.np.ones_like(y_pred.eval)
    mask[pos] = -1
    if outputs.cache['reduction'] == 'mean':
        GLOBAL.np.divide(mask, y_pred.shape[0], out=mask)
    if y_true.requires_grad:
        if y_true.grad is None:
            y_true.grad = Tensor(mask)
        else:
            GLOBAL.np.add(y_true.grad.eval, mask, out=y_true.grad.eval)

    if y_pred.requires_grad:
        if y_pred.grad is None:
            y_pred.grad = Tensor(mask)
        else:
            GLOBAL.np.add(y_pred.grad.eval, mask, out=y_pred.grad.eval)
コード例 #4
0
ファイル: grad_fn.py プロジェクト: E1eveNn/xshinnosuke
def BCEWithLogitsLossBackward(outputs: Tensor):
    y_pred, y_true = outputs.in_bounds
    logits = nn.td_functional.sigmoid(y_pred.eval)
    gradients = GLOBAL.np.subtract(GLOBAL.np.divide(GLOBAL.np.subtract(1, y_true.eval), GLOBAL.np.subtract(1, logits)), GLOBAL.np.divide(y_true.eval, logits))
    if outputs.cache['reduction'] == 'mean':
        avg = GLOBAL.np.prod(y_pred.shape)
        GLOBAL.np.divide(gradients, avg, out=gradients)
    if y_true.requires_grad:
        if y_true.grad is None:
            y_true.grad = Tensor(gradients)
        else:
            GLOBAL.np.add(y_true.grad.eval, gradients, out=y_true.grad.eval)

    if y_pred.requires_grad:
        GLOBAL.np.multiply(GLOBAL.np.multiply(gradients, logits), GLOBAL.np.subtract(1, logits), out=gradients)
        if y_pred.grad is None:
            y_pred.grad = Tensor(gradients)
        else:
            GLOBAL.np.add(y_pred.grad.eval, gradients, out=y_pred.grad.eval)
コード例 #5
0
ファイル: grad_fn.py プロジェクト: E1eveNn/xshinnosuke
def CrossEntropyLossBackward(outputs: Tensor):
    before_softmax_y_pred, y_true = outputs.in_bounds
    y_pred = before_softmax_y_pred.cache['softmax']
    to_sum_dim = GLOBAL.np.prod(GLOBAL.np.asarray(before_softmax_y_pred.shape[:-1])).item()
    probs = y_pred.eval.reshape(-1,  before_softmax_y_pred.shape[-1])
    y_flat = y_true.eval.reshape(to_sum_dim)
    probs[GLOBAL.np.arange(to_sum_dim), y_flat] -= 1
    gradients = probs.reshape(before_softmax_y_pred.shape)
    if outputs.cache['reduction'] == 'mean':
        n = before_softmax_y_pred.eval.shape[0]
        GLOBAL.np.divide(gradients, n, out=gradients)
    gradients = GLOBAL.np.multiply(gradients, outputs.grad.eval, out=gradients)
    if before_softmax_y_pred.requires_grad:
        if before_softmax_y_pred.grad is None:
            before_softmax_y_pred.grad = Tensor(gradients)
        else:
            GLOBAL.np.add(before_softmax_y_pred.grad.eval, gradients, out=before_softmax_y_pred.grad.eval)
コード例 #6
0
ファイル: grad_fn.py プロジェクト: E1eveNn/xshinnosuke
def ChannelAvgpoolBackward(outputs: Tensor):
    mode = outputs.get_cache('mode')
    inputs, = outputs.in_bounds
    if mode == 'reshape':
        dx_reshaped = GLOBAL.np.zeros_like(outputs.cache['x_reshaped'])
        out_newaxis = outputs.eval[:, :, GLOBAL.np.newaxis, :, :]
        mask = (outputs.cache['x_reshaped'] == out_newaxis)
        dout_newaxis = outputs.grad.eval.eval[:, :, GLOBAL.np.newaxis, :, :]
        dout_broadcast, _ = GLOBAL.np.broadcast_arrays(dout_newaxis, dx_reshaped)
        dx_reshaped[mask] = dout_broadcast[mask]
        dx_reshaped /= GLOBAL.np.mean(mask, axis=2, keepdims=True)
        grad = dx_reshaped.reshape(inputs.eval.shape)
        if outputs.cache['pad_size']:
            grad = grad[:, outputs.cache['pad_size']: -outputs.cache['pad_size']]
    else:
        raise NotImplemented

    if inputs.requires_grad:
        inputs.grad.eval.eval += grad
コード例 #7
0
 def __call__(self, shape, **kwargs):
     return Tensor(
         GLOBAL.np.random.normal(loc=self.mean, scale=self.std, size=shape),
         **kwargs)
コード例 #8
0
def tensor(data, **kwargs):
    requires_grad = kwargs.pop('requires_grad', False)
    return Tensor(data=data, requires_grad=requires_grad, **kwargs)
コード例 #9
0
 def __call__(self, shape, **kwargs):
     return Tensor(
         GLOBAL.np.random.uniform(-self.scale, self.scale, size=shape),
         **kwargs)
コード例 #10
0
def zeros_like(a, **kwargs):
    requires_grad = kwargs.pop('requires_grad', a.requires_grad)
    return Tensor(GLOBAL.np.zeros_like(a.data),
                  requires_grad=requires_grad,
                  **kwargs)
コード例 #11
0
 def __call__(self, low, high=None, shape=None, **kwargs):
     return Tensor(GLOBAL.np.random.randint(low=low, high=high, size=shape),
                   **kwargs)
コード例 #12
0
 def __call__(self, shape: Tuple, **kwargs):
     return Tensor(GLOBAL.np.random.rand(*shape), **kwargs)
コード例 #13
0
 def __call__(self, shape: Tuple, **kwargs):
     return Tensor(GLOBAL.np.empty(shape), **kwargs)
コード例 #14
0
 def __call__(self, shape, **kwargs):
     return Tensor(GLOBAL.np.ones(shape), **kwargs)