def look_at(pos, look, up): """Construct a Transform corresponding to a viewpoint in world space.""" cam_to_world = Matrix4x4() # initialize fourth column of the viewing matrix cam_to_world.m[0][3] = pos.x cam_to_world.m[1][3] = pos.y cam_to_world.m[2][3] = pos.z cam_to_world.m[3][3] = 1.0 # construct the base dir = normalize(look - pos) left = normalize(cross(normalize(up), dir)) new_up = cross(dir, left) # fill the other columns cam_to_world.m[0][0] = left.x cam_to_world.m[1][0] = left.y cam_to_world.m[2][0] = left.z cam_to_world.m[3][0] = 0.0 cam_to_world.m[0][1] = new_up.x cam_to_world.m[1][1] = new_up.y cam_to_world.m[2][1] = new_up.z cam_to_world.m[3][1] = 0.0 cam_to_world.m[0][2] = dir.x cam_to_world.m[1][2] = dir.y cam_to_world.m[2][2] = dir.z cam_to_world.m[3][2] = 0.0 return Transform(inverse(cam_to_world), cam_to_world)
def sample_p(self, p, u1, u2): """Sample at point p.""" # Compute coordinate system for sphere sampling p_center = self.object_to_world(Point(0, 0, 0)) wc = normalize(p_center - p) wc_x, wc_y = coordinate_system(wc) # Sample uniformly on sphere if $\pt{}$ is inside it if (distance_squared(p, p_center) - self.radius * self.radius) < 1e-4: return self.sample(u1, u2) # Sample sphere uniformly inside subtended cone sin_theta_max2 = self.radius * self.radius / distance_squared( p, p_center) cos_theta_max = math.sqrt(max(0.0, 1.0 - sin_theta_max2)) raise Exception("next_line") # r = Ray(p, uniform_sample_cone(u1, u2, cos_theta_max, wcX, wcY, wc), 1e-3) r = Ray(p) intersect, t_hit, ray_epsilon, dg_sphere = self.intersect(r) if not intersect: t_hit = dot(p_center - p, normalize(r.d)) ps = r(t_hit) ns = Normal(normalize(ps - p_center)) if (self.reverse_orientation): ns *= -1.0 return ps, ns
def generate_ray(self, sample): """Generate a Ray from the camera.""" # Generate raster and camera samples p_ras = Point(sample.image_x, sample.image_y, 0) p_camera = self.raster_to_camera(p_ras) ray = Ray(Point(0, 0, 0), normalize(Vector.from_point(p_camera)), 0.0, float('inf')) # Modify ray for depth of field if self.lens_radius > 0.0: # Sample point on lens lens_u, lens_v = concentric_sample_disk(sample.lens_u, sample.lens_v) lens_u *= self.lens_radius lens_v *= self.lens_radius # Compute point on plane of focus ft = self.focal_distance / ray.d.z p_focus = ray(ft) # Update ray for effect of lens ray.o = Point(lens_u, lens_v, 0.0) ray.d = normalize(p_focus - ray.o) ray.time = sample.time ray = self.camera_to_world(ray) return 1.0, ray
def look_at(pos, look, up): """Construct a Transform corresponding to a viewpoint in world space.""" cam_to_world = Matrix4x4() # initialize fourth column of the viewing matrix cam_to_world.m[0][3] = pos.x cam_to_world.m[1][3] = pos.y cam_to_world.m[2][3] = pos.z cam_to_world.m[3][3] = 1.0 # construct the base dir = normalize(look-pos) left = normalize(cross(normalize(up), dir)) new_up = cross(dir, left) # fill the other columns cam_to_world.m[0][0] = left.x cam_to_world.m[1][0] = left.y cam_to_world.m[2][0] = left.z cam_to_world.m[3][0] = 0.0 cam_to_world.m[0][1] = new_up.x cam_to_world.m[1][1] = new_up.y cam_to_world.m[2][1] = new_up.z cam_to_world.m[3][1] = 0.0 cam_to_world.m[0][2] = dir.x cam_to_world.m[1][2] = dir.y cam_to_world.m[2][2] = dir.z cam_to_world.m[3][2] = 0.0 return Transform(inverse(cam_to_world), cam_to_world)
def sample_p(self, p, u1, u2): """Sample at point p.""" # Compute coordinate system for sphere sampling p_center = self.object_to_world(Point(0, 0, 0)) wc = normalize(p_center - p) wc_x, wc_y = coordinate_system(wc) # Sample uniformly on sphere if $\pt{}$ is inside it if (distance_squared(p, p_center) - self.radius * self.radius) < 1e-4: return self.sample(u1, u2) # Sample sphere uniformly inside subtended cone sin_theta_max2 = self.radius * self.radius / distance_squared(p, p_center) cos_theta_max = math.sqrt(max(0.0, 1.0 - sin_theta_max2)) raise Exception("next_line") # r = Ray(p, uniform_sample_cone(u1, u2, cos_theta_max, wcX, wcY, wc), 1e-3) r = Ray(p) intersect, t_hit, ray_epsilon, dg_sphere = self.intersect(r) if not intersect: t_hit = dot(p_center - p, normalize(r.d)) ps = r(t_hit) ns = Normal(normalize(ps - p_center)) if self.reverse_orientation: ns *= -1.0 return ps, ns
def sample(self, u1, u2): """Sample the shape.""" raise Exception("check_next_line") p = Point(0, 0, 0) + self.radius * 1.0 # uniform_sample_sphere(u1, u2) ns = normalize(self.object_to_world(Normal(p.x, p.y, p.z))) if (self.reverse_orientation): ns *= -1.0 return self.object_to_world(p), ns
def sample(self, u1, u2): """Sample the shape.""" raise Exception("check_next_line") p = Point(0, 0, 0) + self.radius * 1.0 # uniform_sample_sphere(u1, u2) ns = normalize(self.object_to_world(Normal(p.x, p.y, p.z))) if self.reverse_orientation: ns *= -1.0 return self.object_to_world(p), ns
def rotate(angle, axis): """Construct a Transform representing a rotation around the specified axis.""" a = normalize(axis) sin_t = math.sin(math.radians(angle)) cos_t = math.cos(math.radians(angle)) mat = Matrix4x4(a.x * a.x + (1.0 - a.x * a.x) * cos_t, a.x * a.y * (1.0 - cos_t) - a.z * sin_t, a.x * a.z * (1.0 - cos_t) + a.y * sin_t, 0.0, a.x * a.y * (1.0 - cos_t) + a.z * sin_t, a.y * a.y + (1.0 - a.y * a.y) * cos_t, a.y * a.z * (1.0 - cos_t) - a.x * sin_t, 0.0, a.x * a.z * (1.0 - cos_t) - a.y * sin_t, a.y * a.z * (1.0 - cos_t) + a.x * sin_t, a.z * a.z + (1.0 - a.z * a.z) * cos_t, 0.0, 0.0, 0.0, 0.0, 1.0) return Transform(mat, transpose(mat))
def intersect(self, r): """Intersect the ray with the shape.""" # Transform _Ray_ to object space ray = self.world_to_object(r) # Compute quadratic sphere coefficients A = ray.d.x * ray.d.x + ray.d.y * ray.d.y + ray.d.z * ray.d.z B = 2 * (ray.d.x * ray.o.x + ray.d.y * ray.o.y + ray.d.z * ray.o.z) C = ray.o.x*ray.o.x + ray.o.y*ray.o.y + \ ray.o.z*ray.o.z - self.radius*self.radius # Solve quadratic equation for _t_ values found, t0, t1 = quadratic(A, B, C) if not found: return False, float('inf'), 0.0, None # Compute intersection distance along ray if (t0 > ray.maxt or t1 < ray.mint): return False, float('inf'), 0.0, None t_hit = t0 if (t0 < ray.mint): t_hit = t1 if (t_hit > ray.maxt): return False, float('inf'), 0.0, None # Compute sphere hit position and $\phi$ phi_t = ray(t_hit) if (phi_t.x == 0.0 and phi_t.y == 0.0): phi_t.x = 1e-5 * self.radius phi = math.atan2(phi_t.y, phi_t.x) if (phi < 0.0): phi += 2.0 * math.pi # Test sphere intersection against clipping parameters if ((self.z_min > -self.radius and phi_t.z < self.z_min) or \ (self.z_max < self.radius and phi_t.z > self.z_max) or \ phi > self.phi_max): if (t_hit == t1): return False, float('inf'), 0.0, None if (t1 > ray.maxt): return False, float('inf'), 0.0, None t_hit = t1 # Compute sphere hit position and $\phi$ phi_t = ray(t_hit) if (phi_t.x == 0.0 and phi_t.y == 0.0): phi_t.x = 1e-5 * self.radius phi = math.atan2(phi_t.y, phi_t.x) if (phi < 0.0): phi += 2.0 * math.pi if ((self.z_min > -self.radius and phi_t.z < self.z_min) or \ (self.z_max < self.radius and phi_t.z > self.z_max) or \ phi > self.phi_max): return False, float('inf'), 0.0, None # Find parametric representation of sphere hit u = phi / self.phi_max theta = math.acos(clamp(phi_t.z / self.radius, -1.0, 1.0)) v = (theta - self.theta_min) / (self.theta_max - self.theta_min) # Compute sphere $\dpdu$ and $\dpdv$ zradius = math.sqrt(phi_t.x * phi_t.x + phi_t.y * phi_t.y) inv_z_radius = 1.0 / zradius cos_phi = phi_t.x * inv_z_radius sin_phi = phi_t.y * inv_z_radius dpdu = Vector(-self.phi_max * phi_t.y, self.phi_max * phi_t.x, 0) dpdv = (self.theta_max-self.theta_min) * \ Vector(phi_t.z * cos_phi, phi_t.z * sin_phi, -self.radius * math.sin(theta)) # Compute sphere $\dndu$ and $\dndv$ d2Pduu = -self.phi_max * self.phi_max * Vector(phi_t.x, phi_t.y, 0) d2Pduv = (self.theta_max - self.theta_min) * phi_t.z * self.phi_max * \ Vector(-sin_phi, cos_phi, 0.0) d2Pdvv = -(self.theta_max - self.theta_min) * \ (self.theta_max - self.theta_min) * \ Vector(phi_t.x, phi_t.y, phi_t.z) # Compute coefficients for fundamental forms E = dot(dpdu, dpdu) F = dot(dpdu, dpdv) G = dot(dpdv, dpdv) N = normalize(cross(dpdu, dpdv)) e = dot(N, d2Pduu) f = dot(N, d2Pduv) g = dot(N, d2Pdvv) # Compute $\dndu$ and $\dndv$ from fundamental form coefficients invEGF2 = 1.0 / (E * G - F * F) dndu = Normal.from_vector((f*F - e*G) * invEGF2 * dpdu + \ (e*F - f*E) * invEGF2 * dpdv) dndv = Normal.from_vector((g*F - f*G) * invEGF2 * dpdu + \ (f*F - g*E) * invEGF2 * dpdv) # Initialize _DifferentialGeometry_ from parametric information o2w = self.object_to_world dg = DifferentialGeometry.from_intersection(o2w(phi_t), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, self) # Compute _rayEpsilon_ for quadric intersection ray_epsilon = 5e-4 * t_hit return True, t_hit, ray_epsilon, dg
def intersect(self, r): """Intersect the ray with the shape.""" # Transform _Ray_ to object space ray = self.world_to_object(r) # Compute quadratic sphere coefficients A = ray.d.x * ray.d.x + ray.d.y * ray.d.y + ray.d.z * ray.d.z B = 2 * (ray.d.x * ray.o.x + ray.d.y * ray.o.y + ray.d.z * ray.o.z) C = ray.o.x * ray.o.x + ray.o.y * ray.o.y + ray.o.z * ray.o.z - self.radius * self.radius # Solve quadratic equation for _t_ values found, t0, t1 = quadratic(A, B, C) if not found: return False, float("inf"), 0.0, None # Compute intersection distance along ray if t0 > ray.maxt or t1 < ray.mint: return False, float("inf"), 0.0, None t_hit = t0 if t0 < ray.mint: t_hit = t1 if t_hit > ray.maxt: return False, float("inf"), 0.0, None # Compute sphere hit position and $\phi$ phi_t = ray(t_hit) if phi_t.x == 0.0 and phi_t.y == 0.0: phi_t.x = 1e-5 * self.radius phi = math.atan2(phi_t.y, phi_t.x) if phi < 0.0: phi += 2.0 * math.pi # Test sphere intersection against clipping parameters if ( (self.z_min > -self.radius and phi_t.z < self.z_min) or (self.z_max < self.radius and phi_t.z > self.z_max) or phi > self.phi_max ): if t_hit == t1: return False, float("inf"), 0.0, None if t1 > ray.maxt: return False, float("inf"), 0.0, None t_hit = t1 # Compute sphere hit position and $\phi$ phi_t = ray(t_hit) if phi_t.x == 0.0 and phi_t.y == 0.0: phi_t.x = 1e-5 * self.radius phi = math.atan2(phi_t.y, phi_t.x) if phi < 0.0: phi += 2.0 * math.pi if ( (self.z_min > -self.radius and phi_t.z < self.z_min) or (self.z_max < self.radius and phi_t.z > self.z_max) or phi > self.phi_max ): return False, float("inf"), 0.0, None # Find parametric representation of sphere hit u = phi / self.phi_max theta = math.acos(clamp(phi_t.z / self.radius, -1.0, 1.0)) v = (theta - self.theta_min) / (self.theta_max - self.theta_min) # Compute sphere $\dpdu$ and $\dpdv$ zradius = math.sqrt(phi_t.x * phi_t.x + phi_t.y * phi_t.y) inv_z_radius = 1.0 / zradius cos_phi = phi_t.x * inv_z_radius sin_phi = phi_t.y * inv_z_radius dpdu = Vector(-self.phi_max * phi_t.y, self.phi_max * phi_t.x, 0) dpdv = (self.theta_max - self.theta_min) * Vector( phi_t.z * cos_phi, phi_t.z * sin_phi, -self.radius * math.sin(theta) ) # Compute sphere $\dndu$ and $\dndv$ d2Pduu = -self.phi_max * self.phi_max * Vector(phi_t.x, phi_t.y, 0) d2Pduv = (self.theta_max - self.theta_min) * phi_t.z * self.phi_max * Vector(-sin_phi, cos_phi, 0.0) d2Pdvv = ( -(self.theta_max - self.theta_min) * (self.theta_max - self.theta_min) * Vector(phi_t.x, phi_t.y, phi_t.z) ) # Compute coefficients for fundamental forms E = dot(dpdu, dpdu) F = dot(dpdu, dpdv) G = dot(dpdv, dpdv) N = normalize(cross(dpdu, dpdv)) e = dot(N, d2Pduu) f = dot(N, d2Pduv) g = dot(N, d2Pdvv) # Compute $\dndu$ and $\dndv$ from fundamental form coefficients invEGF2 = 1.0 / (E * G - F * F) dndu = Normal.from_vector((f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv) dndv = Normal.from_vector((g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv) # Initialize _DifferentialGeometry_ from parametric information o2w = self.object_to_world dg = DifferentialGeometry.from_intersection(o2w(phi_t), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, self) # Compute _rayEpsilon_ for quadric intersection ray_epsilon = 5e-4 * t_hit return True, t_hit, ray_epsilon, dg