コード例 #1
0
ファイル: jobs_manager.py プロジェクト: vojtechjelinek/oppia
def run_job(
    job_class: Type[base_jobs.JobBase],
    sync: bool,
    namespace: Optional[str] = None,
    pipeline: Optional[beam.Pipeline] = None
) -> beam_job_models.BeamJobRunModel:
    """Runs the specified job synchronously.

    In other words, the function will wait for the job to finish running before
    returning a value.

    Args:
        job_class: type(base_jobs.JobBase). The type of job to run.
        sync: bool. Whether to run the job synchronously.
        namespace: str. The namespace in which models should be created.
        pipeline: Pipeline. The pipeline to run the job upon. If omitted, then a
            new pipeline will be used instead.

    Returns:
        BeamJobRun. Contains metadata related to the execution status of the
        job.

    Raises:
        RuntimeError. Failed to deploy given job to the Dataflow service.
    """
    if pipeline is None:
        pipeline = beam.Pipeline(
            runner=runners.DirectRunner()
            if sync else runners.DataflowRunner(),
            options=job_options.JobOptions(namespace=namespace))

    job = job_class(pipeline)
    job_name = job_class.__name__

    # NOTE: Exceptions raised within this context are logged and suppressed.
    with _job_bookkeeping_context(job_name) as run_model:
        _ = job.run() | job_io.PutResults(run_model.id)

        run_result = pipeline.run()

        if sync:
            run_result.wait_until_finish()
            run_model.latest_job_state = beam_job_models.BeamJobState.DONE.value

        elif run_result.has_job:
            run_model.dataflow_job_id = run_result.job_id()
            run_model.latest_job_state = run_result.state

        else:
            raise RuntimeError(
                'Failed to deploy %s to the Dataflow service. Please try again '
                'after a few minutes.' % job_name)

    # NDB operations in Beam do not properly update the context cache
    # (this cache is separate for every application thread), thus we clear
    # it ourselves.
    with datastore_services.get_ndb_context() as ndb_context:
        ndb_context.clear_cache()

    return run_model
コード例 #2
0
    def test_single_output(self) -> None:
        messages = [
            job_run_result.JobRunResult(stdout='Hello, World!',
                                        stderr='Uh-oh, World!'),
        ]

        self.assert_pcoll_empty(self.pipeline
                                | beam.Create(messages)
                                | job_io.PutResults(self.JOB_ID))

        result = beam_job_services.get_beam_job_run_result(self.JOB_ID)
        self.assertEqual(result.stdout, 'Hello, World!')
        self.assertEqual(result.stderr, 'Uh-oh, World!')
コード例 #3
0
    def test_sharded_output(self) -> None:
        messages = [
            job_run_result.JobRunResult(stdout='abc', stderr='123'),
            job_run_result.JobRunResult(stdout='def', stderr='456'),
            job_run_result.JobRunResult(stdout='ghi', stderr='789'),
        ]

        with self.swap(job_run_result, 'MAX_OUTPUT_BYTES', 11):
            self.assert_pcoll_empty(self.pipeline
                                    | beam.Create(messages)
                                    | job_io.PutResults(self.JOB_ID))

        result = beam_job_services.get_beam_job_run_result(self.JOB_ID)
        self.assertItemsEqual(
            result.stdout.split('\n'),
            ['abc', 'def', 'ghi'])  # type: ignore[no-untyped-call]
        self.assertItemsEqual(
            result.stderr.split('\n'),
            ['123', '456', '789'])  # type: ignore[no-untyped-call]