コード例 #1
0
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(os.path.join('../data', configs['data']['filename']),
                      os.path.join('../data', configs['data']['VIMfile']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])
    '''
	# in-memory training
	model.train(
		x,
		y,
		epochs = configs['training']['epochs'],
		batch_size = configs['training']['batch_size'],
		save_dir = configs['model']['save_dir']
	)

    '''
    # Out-of memory generative training
    steps_per_epoch = math.ceil(
        (data.len_train - configs['data']['sequence_length']) /
        configs['training']['batch_size'])
    model.train_generator(data_gen=data.generate_train_batch(
        seq_len=configs['data']['sequence_length'],
        batch_size=configs['training']['batch_size'],
        normalise=configs['data']['normalise']),
                          epochs=configs['training']['epochs'],
                          batch_size=configs['training']['batch_size'],
                          steps_per_epoch=steps_per_epoch,
                          save_dir=configs['model']['save_dir'])

    x_test, y_test, p0_vec = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    #predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    # predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)
    pred = predictions.reshape((predictions.size, 1))

    #plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
    #plot_results(pred, y_test) #normalised predictions

    # De-normalise & plot
    p_pred, p_true = denorm_transform(p0_vec, pred, y_test)
    plot_results(p_pred, p_true)  #de-normalised, i.e., original fex units

    # Compute evaluation metrics
    assess = EvalMetrics(p_true, p_pred)
    MAE = assess.get_MAE()
    RMSE = assess.get_RMSE()
    print("MAE on validation set is: %f" % MAE)
    print("RMSE on validation set is: %f" % RMSE)
コード例 #2
0
def predict_prepare(data_x = None,model_path = None,config_file = 'web_flask/LSTM/config.json'):

    config_file = config_file
    configs = json.load(open(config_file, 'r'))

    '''
    data_loader = DataLoader(
        os.path.join('data', configs['data']['filename']),
        configs['data']['train_test_split'],
        configs['data']['columns'],
         normalise_meth=configs['data']['normalise']
    )

    # 用所有数据进行预测
    data_x,data_y = data_loader.get_all_data(configs['data']['sequence_length'],\
        normalise=configs['data']['normalise'])

    data_x = data_x[-1]
    '''
    model = Model()
    model_way = './web_flask/LSTM/saved_models/20052019-174244-e60.h5'
    model.load_model(model_way)

    predictions = model.predict_point_by_point(data_x)

    # print(predictions)

    ''' 每五分钟预测一个值,貌似是错的
コード例 #3
0
ファイル: run.py プロジェクト: ovek/time-series-lstm
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataProcessor(os.path.join('data', configs['data']['filename']),
                         configs['data']['train_test_split'],
                         configs['data']['columns'])

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])

    model.train(x,
                y,
                epochs=configs['training']['epochs'],
                batch_size=configs['training']['batch_size'],
                save_dir=".")

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    predictions_pointbypoint = model.predict_point_by_point(x_test)
    plot_results(predictions_pointbypoint, y_test)

    predictions_fullseq = model.predict_sequence_full(
        x_test, configs['data']['sequence_length'])
    plot_results(predictions_fullseq, y_test)
コード例 #4
0
def predict():
    configs = json.load(open(CONFIG, 'r'))

    data = DataLoader(DATA, configs['data']['train_test_split'],
                      configs['data']['columns'])

    global model
    if model == None:
        model = Model()
        model.load_model(MODEL)

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    if TYPE == "sequence":
        predictions = model.predict_sequences_multiple(
            x_test, configs['data']['sequence_length'],
            configs['data']['sequence_length'])
        plot_results_multiple(predictions, y_test,
                              configs['data']['sequence_length'])
    if TYPE == "point" or TYPE == "predict":
        predictions = model.predict_point_by_point(x_test)
    if TYPE == "full":
        predictions = model.predict_sequence_full(
            x_test, configs['data']['sequence_length'])
    if TYPE == "full" or TYPE == "point":
        plot_results(predictions, y_test)
    if TYPE == "predict":
        predicted_value = data.denormalize_windows(
            predictions[-1], configs['data']['sequence_length'])
        sys.stdout.write("--END--{}--END--\n".format(predicted_value))
    else:
        sys.stdout.write("--END--")
コード例 #5
0
ファイル: run.py プロジェクト: BenfenYU/HelpPlay
def main(train_after=False):
    config_file = 'web_flask/LSTM/config.json'
    configs = json.load(open(config_file, 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(configs['data']['filename'],
                      configs['data']['train_test_split'],
                      configs['data']['columns'],
                      normalise_meth=configs['data']['normalise'])

    model = Model()
    model.build_model(configs) if not train_after else \
        model.load_model(os.path.join( configs['model']['save_dir'],configs['model']['model_name']))
    history = LossHistory()

    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    # in-memory training
    model.train(x,
                y,
                epochs=configs['training']['epochs'],
                batch_size=configs['training']['batch_size'],
                save_dir=configs['model']['save_dir'],
                history=history,
                x_test=x_test,
                y_test=y_test)
    '''
    # out-of memory generative training
    steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    model.train_generator(
        data_gen=data.generate_train_batch(
            seq_len=configs['data']['sequence_length'],
            batch_size=configs['training']['batch_size'],
            normalise=configs['data']['normalise']
        ),
        epochs=configs['training']['epochs'],
        batch_size=configs['training']['batch_size'],
        steps_per_epoch=steps_per_epoch,
        save_dir=configs['model']['save_dir']
    )

    '''

    history.loss_plot('epoch')
    #loss, accuracy = model.model.evaluate(x_test, y_test)
    #print(loss,accuracy)

    #predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    #predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x[0])  #_test)

    #plot_results_multiple(predictions, y, configs['data']['sequence_length'])
    plot_results(predictions, y)
コード例 #6
0
def main():
    configs = json.load(open("config.json", "r"))
    if not os.path.exists(configs["model"]["save_dir"]):
        os.makedirs(configs["model"]["save_dir"])

    data = DataLoader(
        os.path.join("data", configs["data"]["filename"]),
        configs["data"]["train_test_split"],
        configs["data"]["columns"],
    )

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(
        seq_len=configs["data"]["sequence_length"],
        normalise=configs["data"]["normalise"],
    )

    """
	# in-memory training
	model.train(
		x,
		y,
		epochs = configs['training']['epochs'],
		batch_size = configs['training']['batch_size'],
		save_dir = configs['model']['save_dir']
	)
	"""
    # out-of memory generative training
    steps_per_epoch = math.ceil(
        (data.len_train - configs["data"]["sequence_length"])
        / configs["training"]["batch_size"]
    )
    model.train_generator(
        data_gen=data.generate_train_batch(
            seq_len=configs["data"]["sequence_length"],
            batch_size=configs["training"]["batch_size"],
            normalise=configs["data"]["normalise"],
        ),
        epochs=configs["training"]["epochs"],
        batch_size=configs["training"]["batch_size"],
        steps_per_epoch=steps_per_epoch,
        save_dir=configs["model"]["save_dir"],
    )

    x_test, y_test = data.get_test_data(
        seq_len=configs["data"]["sequence_length"],
        normalise=configs["data"]["normalise"],
    )

    # predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    # predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)

    # plot_results_multiple(predictions, y_test, configs["data"]["sequence_length"])
    plot_results(predictions, y_test)
コード例 #7
0
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']): os.makedirs(configs['model']['save_dir'])

    data = DataLoader(
        os.path.join('data', configs['data']['filename']),
        configs['data']['train_test_split'],
        configs['data']['columns']
    )

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )

    if not configs['training']['train']:
        model.load_model(filepath='saved_models/02102019-164727-e2.h5')
    else:
        model.train(
            x,
            y,
            epochs=configs['training']['epochs'],
            batch_size=configs['training']['batch_size'],
            save_dir=configs['model']['save_dir']
        )
    # out-of memory generative training
    # steps_per_epoch = math.ceil(
    #     (data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    # model.train_generator(
    #     data_gen=data.generate_train_batch(
    #         seq_len=configs['data']['sequence_length'],
    #         batch_size=configs['training']['batch_size'],
    #         normalise=configs['data']['normalise']
    #     ),
    #     epochs=configs['training']['epochs'],
    #     batch_size=configs['training']['batch_size'],
    #     steps_per_epoch=steps_per_epoch,
    #     save_dir=configs['model']['save_dir']
    # )

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )

    # predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'],
    #                                                configs['data']['sequence_length'])
    # predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])

    # plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])

    predictions = model.predict_point_by_point(x_test)
    plot_results(predictions, y_test)
コード例 #8
0
ファイル: main.py プロジェクト: heroichu/traffic-predict
def main():
    configs = json.load(open('config.json', 'r'))

    #create folder for save model params
    if not os.path.exists(configs['model']['save_dir']): os.makedirs(configs['model']['save_dir'])

    data = DataLoader(
        os.path.join('data', configs['data']['filename']),
        configs['data']['train_test_split'],
        configs['data']['columns']
    )

    #plot true data
    #plot_results(data.data_train,True)

    #train model
    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )

    steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    model.train_generator(
        data_gen=data.generate_train_batch(
            seq_len=configs['data']['sequence_length'],
            batch_size=configs['training']['batch_size'],
            normalise=configs['data']['normalise']
        ),
        epochs=configs['training']['epochs'],
        batch_size=configs['training']['batch_size'],
        steps_per_epoch=steps_per_epoch,
        save_dir=configs['model']['save_dir']
    )

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )


    predictions = model.predict_point_by_point(x_test)
#    plot_results(predictions, y_test)
#    print (predictions)
#    plot_results(predictions, y_test)



    data1 = pd.DataFrame(predictions)    
    data1.to_csv('predict.csv')
    data2 = pd.DataFrame(y_test)
    data2.to_csv('true.csv')
コード例 #9
0
def predict(test):
    # initialize dataLoader with split of 0

    cleaner.main_func()

    data = DataLoader(test, 0, configs['data']['columns'])
    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'], normalise=False)
    model = Model()
    model.load_model('saved_models/tracker.h5')
    predictions = model.predict_point_by_point(x_test)
    plot_results(predictions, y_test)
    return "OK"
コード例 #10
0
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])

    model = Model()
    model.build_model(configs)
    # 从已经保存的模型中加载模型,此时不需要再进行模型训练:即不需要再执行model.train()部分
    # model.load_model(r'saved_models/15102019-155115-e2.h5')

    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])
    # print('x的shape是:{0}'.format(x.shape))  # (3942, 49, 2)
    # print('y的shape是:{0}'.format(y.shape))  # (3942, 1)

    # in-memory training
    model.train(x,
                y,
                epochs=configs['training']['epochs'],
                batch_size=configs['training']['batch_size'],
                save_dir=configs['model']['save_dir'])
    '''
    # out-of memory generative training
    steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    model.train_generator(
        data_gen=data.generate_train_batch(
            seq_len=configs['data']['sequence_length'],
            batch_size=configs['training']['batch_size'],
            normalise=configs['data']['normalise']
        ),
        epochs=configs['training']['epochs'],
        batch_size=configs['training']['batch_size'],
        steps_per_epoch=steps_per_epoch,
        save_dir=configs['model']['save_dir']
    )
    '''

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    # predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    # predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)

    # plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
    plot_results(predictions, y_test)
コード例 #11
0
ファイル: run.py プロジェクト: raymund07/lstm
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])
    #
    #    '''
    #	# in-memory training
    #	model.train(
    #		x,
    #		y,
    #		epochs = configs['training']['epochs'],
    #		batch_size = configs['training']['batch_size'],
    #		save_dir = configs['model']['save_dir']
    #	)
    #	'''
    # out-of memory generative training
    steps_per_epoch = math.ceil(
        (data.len_train - configs['data']['sequence_length']) /
        configs['training']['batch_size'])
    model.train_generator(data_gen=data.generate_train_batch(
        seq_len=configs['data']['sequence_length'],
        batch_size=configs['training']['batch_size'],
        normalise=configs['data']['normalise']),
                          epochs=configs['training']['epochs'],
                          batch_size=configs['training']['batch_size'],
                          steps_per_epoch=steps_per_epoch,
                          save_dir=configs['model']['save_dir'])

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    predictions = model.predict_sequences_multiple(
        x_test, configs['data']['sequence_length'],
        configs['data']['sequence_length'])
    predictions = model.predict_sequence_full(
        x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)

    plot_results_multiple(predictions, y_test,
                          configs['data']['sequence_length'])
    plot_results(predictions, y_test)
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])
    '''
	# in-memory training
	model.train(
		x,
		y,
		epochs = configs['training']['epochs'],
		batch_size = configs['training']['batch_size'],
		save_dir = configs['model']['save_dir']
	)
	'''
    # out-of memory generative training

    steps_per_epoch = math.ceil(
        (data.len_train - configs['data']['sequence_length']) /
        configs['training']['batch_size'])
    model.train_generator(data_gen=data.generate_train_batch(
        seq_len=configs['data']['sequence_length'],
        batch_size=configs['training']['batch_size'],
        normalise=configs['data']['normalise']),
                          epochs=configs['training']['epochs'],
                          batch_size=configs['training']['batch_size'],
                          steps_per_epoch=steps_per_epoch,
                          save_dir=configs['model']['save_dir'],
                          configs=configs)

    x_test, y_test, p0 = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    # predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    # predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)
    y_test = np.reshape(np.copy(y_test), -1)

    plot_results((p0 * (predictions + 1))[-200:], (p0 * (y_test + 1))[-200:])
    measure_performance(predictions, y_test)
コード例 #13
0
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']): os.makedirs(configs['model']['save_dir'])

    data = DataLoader(
        os.path.join('data', configs['data']['filename']),
        configs['data']['train_test_split'],
        configs['data']['columns']
    )
    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )
    '''
	# in-memory training
	model.train(
		x,
		y,
		epochs = configs['training']['epochs'],
		batch_size = configs['training']['batch_size'],
		save_dir = configs['model']['save_dir']
	)
	'''
    # out-of memory generative training
    steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    model.train_generator(
        data_gen=data.generate_train_batch(
            seq_len=configs['data']['sequence_length'],
            batch_size=configs['training']['batch_size'],
            normalise=configs['data']['normalise']
        ),
        epochs=configs['training']['epochs'],
        batch_size=configs['training']['batch_size'],
        steps_per_epoch=steps_per_epoch,
        save_dir=configs['model']['save_dir']
    )

    x_test, y_test, onedot = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )
    #predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    #predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(onedot)
    with open('output.txt', 'w') as f:
        f.write('预测下一时间的螺栓螺母消耗量为:' + str(int((predictions[-1] + 1) * data.last_raw_data(seq_len=configs['data']['sequence_length']))))
コード例 #14
0
def main(choice):
    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])
    model = Model()
    model.build_model(configs)
    if (choice != 'info'):
        x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                                   normalise=configs['data']['normalise'])

        # in-memory training
        model.train(x,
                    y,
                    epochs=configs['training']['epochs'],
                    batch_size=configs['training']['batch_size'])

        # out-of memory generative training
        # steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
        # model.train_generator(
        #     data_gen = data.generate_train_batch(
        #         seq_len = configs['data']['sequence_length'],
        #         batch_size = configs['training']['batch_size'],
        #         normalise = configs['data']['normalise']
        #     ),
        #     epochs = configs['training']['epochs'],
        #     batch_size = configs['training']['batch_size'],
        #     steps_per_epoch = steps_per_epoch
        # )

        x_test, y_test = data.get_test_data(
            seq_len=configs['data']['sequence_length'],
            normalise=configs['data']['normalise'])

        if (choice == "multi"):
            predictions = model.predict_sequences_multiple(
                x_test, configs['data']['sequence_length'],
                configs['data']['sequence_length'])
            plot_results_multiple(predictions, y_test,
                                  configs['data']['sequence_length'])
        elif (choice == "seq"):
            predictions = model.predict_sequence_full(
                x_test, configs['data']['sequence_length'])
            plot_results(predictions, y_test)
        else:
            predictions = model.predict_point_by_point(x_test)
            plot_results(predictions, y_test)
コード例 #15
0
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):os.makedirs(configs['model']['save_dir'])

    model = Model()
    my_model = model.build_model(configs)

    plot_model(my_model, to_file='output\model.png', show_shapes=True)
    data = DataLoader(
        os.path.join('data', configs['data']['filename']),
        configs['data']['train_test_split'],
        configs['data']['columns']
    )

    x, y = data.get_train_data(
        configs['data']['sequence_length'],
        configs['data']['normalise']
    )

    print(x.shape)
    print(y.shape)

    print(configs['training']['batch_size'])
    print(configs['model']['save_dir'])
    model.train(x,
                y,
                configs['training']['epochs'],
                configs['training']['batch_size'],
                configs['model']['save_dir']
                )

    x_test, y_test = data.get_test_data(
        configs['data']['sequence_length'],
        configs['data']['normalise']
    )

    # predictions = model.predict_sequences_multiplt(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    # predictions = model.predict_sequences_full(x_test, configs['data']['sequence_length'])
    prediction_point = model.predict_point_by_point(x_test)

    # print(prediction_point)
    # print(np.array(predictions).shape)

    # plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
    plot_results(prediction_point, y_test)
コード例 #16
0
ファイル: run.py プロジェクト: ethanwhois/Keras_predict_power
def main():
    #load parameters
    configs = json.load(open('./data/config.json','r'))
    if not os.path.exists(configs['model']['save_dir']):os.makedirs(configs['model']['save_dir'])

    data = DataLoader(
        os.path.join('data',configs['data']['filename']),
        configs['data']['train_test_split'],
        configs['data']['columns'],

    )
    #create RNN model
    model=Model()
    model.build_model(configs)

    #loading trainning data
    x,y = data.get_train_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )
    print(x.shape)
    print(y.shape)

    #training model
    model.train(
        x,
        y,
        epochs=configs['training']['epochs'],
        batch_size=configs['training']['batch_size'],
        save_dir=configs['model']['save_dir']
    )

    #test results
    x_test, y_test = data.get_test_data(
        seq_len= configs['data']['sequence_length'],
        normalise=configs['data']['normalise'],
    )

    #results visualization
    predictions_multiseq = model.predict_sequences_multiple(x_test,configs['data']['sequence_length'],configs['data']['sequence_length'])
    predictions_pointbypoint=model.predict_point_by_point(x_test)

    plot_results_multiple(predictions_multiseq,y_test,configs['data']['sequence_length'])
    plot_results(predictions_pointbypoint,y_test)
コード例 #17
0
ファイル: run.py プロジェクト: mikeszabi/ThermoNN
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(
        os.path.join('data', configs['data']['filename']),
        configs['data']['train_test_split'],
    )

    model = Model()
    model.build_model(configs)

    # get train data
    x, y = data.get_train_data()

    #x=x.squeeze()
    # in-memory training
    model.train(x,
                y,
                epochs=configs['training']['epochs'],
                batch_size=configs['training']['batch_size'],
                save_dir=configs['model']['save_dir'])
    #    # out-of memory generative training
    #    steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    #    model.train_generator(
    #        data_gen=data.generate_train_batch(
    #            batch_size=configs['training']['batch_size'],
    #        ),
    #        epochs=configs['training']['epochs'],
    #        batch_size=configs['training']['batch_size'],
    #        steps_per_epoch=steps_per_epoch,
    #        save_dir=configs['model']['save_dir']
    #    )

    # testing model
    x_test, y_test = data.get_test_data()
    #x_test=x_test.squeeze()

    predictions = model.predict_point_by_point(x_test)

    #   plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
    plot_results(predictions, y_test)
コード例 #18
0
ファイル: run.py プロジェクト: yananma/xiangmu
def main():
    #读取所需参数
    configs = json.load(open('config_2.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])
    #读取数据
    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])
    #创建RNN模型
    model = Model()
    mymodel = model.build_model(configs)

    plot_model(mymodel, to_file='model.png', show_shapes=True)

    #加载训练数据
    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])
    print(x.shape)
    print(y.shape)

    #训练模型
    model.train(x,
                y,
                epochs=configs['training']['epochs'],
                batch_size=configs['training']['batch_size'],
                save_dir=configs['model']['save_dir'])

    #测试结果
    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    #展示测试效果
    predictions_multiseq = model.predict_sequences_multiple(
        x_test, configs['data']['sequence_length'],
        configs['data']['sequence_length'])
    predictions_pointbypoint = model.predict_point_by_point(x_test, debug=True)

    plot_results_multiple(predictions_multiseq, y_test,
                          configs['data']['sequence_length'])
    plot_results(predictions_pointbypoint, y_test)
コード例 #19
0
ファイル: predict.py プロジェクト: proloving/LSTM-Prediction
def main():
    configs = json.load(open('config.json', 'r'))
    model = Model()
    model.load_model("./saved_models/model2.h5")

    data = DataLoader(
        os.path.join('data', configs['data']['filename']),
        configs['data']['train_test_split'],
        configs['data']['columns']
    )

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )

    # predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    # predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)

    # plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
    plot_results(predictions, y_test)
コード例 #20
0
ファイル: run.py プロジェクト: BenfenYU/HelpPlay
def main_plot():

    configs = json.load(open(config_file, 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])
    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'],
                      normalise_meth=configs['data']['normalise'])

    x, y = data.get_test_data(seq_len=configs['data']['sequence_length'],
                              normalise=configs['data']['normalise'])
    model = Model()
    global newest_model
    if newest_model:
        model_way = newest_model
    else:
        model_way = '/home/bf/Documents/Projects/helpplay/HelpPlay/train/LSTM-Neural-Network-for-Time-Series-Prediction/saved_models/10062019-163648-e40.h5'
    model.load_model(model_way)
    print(model.model.evaluate(x, y))
    pre_y = model.predict_point_by_point(x)
    print(x)
    plot_results(pre_y, y)
コード例 #21
0
model_id = configs['model']['model_id']
save_dir = configs['model']['save_dir']

dataloader = DataLoader()
x_scaler_filename = save_dir + "/" + model_id + "-x.scaler"
y_scaler_filename = save_dir + "/" + model_id + "-y.scaler"
dataloader.restore_scalers(x_scaler_filename, y_scaler_filename)

filename = os.path.join('data', configs['data']['filename'])
dataframe = pandas.read_csv(filename, sep=',', encoding='utf-8')
dataframe.index.name = 'fecha'
x_data = dataframe.get(configs['data']['x_cols'], ).values

in_seq_len = configs['data']['input_sequence_length']
x_data = x_data[:, :]  # pick three sequences to make predictions
input_data = dataloader.prepare_input_data(x_data, in_seq_len)
print("Input vector shape: " + str(x_data.shape))

model_filename = sys.argv[2]
model = Model(configs['data']['output_mode'])
model.load_model(filepath=model_filename)

print("Plotting predictions point by point on validation set")
predictions = model.predict_point_by_point(input_data)
print(predictions.shape)
unscaled_predictions = dataloader.recompose_results(predictions[:, 0, :],
                                                    side="y")
plot_results(unscaled_predictions,
             x_data[configs['data']['input_sequence_length']:, :])
コード例 #22
0
def main():
    configs = json.load(open('configcrops.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])

    # in-memory training
    model.train(x,
                y,
                epochs=configs['training']['epochs'],
                batch_size=configs['training']['batch_size'],
                save_dir=configs['model']['save_dir'])

    # Yogyakarta: Kulon progo, bantul, gunung kidul, sleman, DIY
    # Jawa Barat: Bandung, Tasikmalaya, Majalengka, Cirebon, Kuningan, Garut, Sumedang, Cianjut, Subang, Purwakarta, Indramayu
    # Ciamis, Sukabumi, Bogor, Bekasi, Karawang

    # # out-of memory generative training
    # steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    # model.train_generator(
    #     data_gen=data.generate_train_batch(
    #         seq_len=configs['data']['sequence_length'],
    #         batch_size=configs['training']['batch_size'],
    #         normalise=configs['data']['normalise']
    #     ),
    #     epochs=configs['training']['epochs'],
    #     batch_size=configs['training']['batch_size'],
    #     steps_per_epoch=steps_per_epoch,
    #     save_dir=configs['model']['save_dir']
    # )

    # # save_dir = configs['model']['save_dir']

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    # print(x_test)
    # print(y_test)

    # predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])

    predictions_point = model.predict_point_by_point(x_test)
    print(len(predictions_point))
    plot_results(predictions_point, y_test)

    # plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
    # predictions_full = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    # plot_results(predictions_full, y_test)

    groundtrue = data._groundtruths(1)
    groundtrue = (groundtrue.ravel())
    print(len(groundtrue))

    RMSElist = []
    for i in range(len(groundtrue)):
        errorrate = groundtrue[i] - predictions_point[i]
        hasilkuadrat = errorrate * errorrate
        RMSElist.append(hasilkuadrat)
    RMSE = sum(RMSElist) / (len(predictions_point) - 2)
    RMSE = RMSE**(1 / 2)
    print(RMSE)

    getdataforecast = data._forecasting(5, 1)

    total_prediksi = 5
    takefrom = 5
    forecast_result = model.forecast(total_prediksi, getdataforecast, takefrom)
    # print(forecast_result[0])
    # forecast_result=np.append(forecast_result,[0.0])
    # print(forecast_result)

    n_steps = 8
    # split into samples
    X, y = split_sequence(forecast_result, n_steps)
    # reshape from [samples, timesteps] into [samples, timesteps, features]
    n_features = 1
    # print(X)
    X = X.reshape((X.shape[0], X.shape[1], n_features))
    # define model
    model = Sequential()
    model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))
    model.add(Dense(1))
    model.compile(optimizer='adam', loss='mse')
    # fit model
    model.fit(X, y, epochs=200, verbose=0)

    # demonstrate prediction
    for j in range(total_prediksi):
        getxlastnumber = array(forecast_result[(-n_steps - 1):-1])
        x_input = getxlastnumber
        # print(x_input)

        x_input = x_input.reshape((1, n_steps, n_features))
        yhat = model.predict(x_input, verbose=0)
        # print(yhat[0][0])

        forecast_result = np.append(forecast_result, yhat[0])
        # prediction_point=np.append(prediction_point,yhat[0])

    plot_results_onlypredicted(forecast_result)
コード例 #23
0
def main():
    configs = json.load(open('configcrops.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    #filename1 can be changed into filename (see the configcrops.json)
    namaefile = configs['data']['filename1']

    with open(namaefile, 'r') as dataframe:
        hasil = json.load(dataframe)
    # print(hasil)

    temp = []
    listhasil = []
    for key, value in hasil.items():
        temp = [key, value]
        listhasil.append(temp)

    listkota = [
        'Kulon Progo', 'Bantul', 'Gunung Kidul', 'Sleman', 'DIY', 'Bandung',
        'Tasikmalaya', 'Majalengka', 'Cirebon', 'Kuningan', 'Garut',
        'Sumedang', 'Cianjur', 'Subang', 'Purwakarta', 'Indramayu', 'Ciamis',
        'Sukabumi', 'Bogor', 'Bekasi', 'Karawang'
    ]
    kodekota = [
        'KLP', 'BTL', 'GKD', 'SLM', 'DIY', 'BD', 'TKM', 'MJK', 'CRB', 'KNG',
        'GRT', 'SMD', 'CJR', 'SBG', 'PWK', 'IDY', 'CMS', 'SKB', 'BGR', 'BKS',
        'KRW'
    ]
    listtahun = []
    for i in range(1961, 2015):
        listtahun.append(str(i))

    data = []
    #listhasil
    #=[["Kulon Progo",{data tahun dan crops},"DIY",{data tahun dan crops}]
    datacrops = []
    datalengkapcrops = []
    datalengkaptahun = []
    datatahun_semuadaerah = []

    #Variabel untuk tampung data csv
    kota_untuk_csv = []  #pembuatan kolom kota pada csv
    kode_untuk_csv = []  #pembuatan kolom kode untuk csv
    tahun_untuk_csv = []  #pembuatan kolom tahun untuk csv
    crops_untuk_csv = []  #pembuatan kolom crops untuk csv
    RMSE_untuk_csv = []

    semua_data_csv = [
    ]  #untuk menampung data kota,kode,tahun, dan crops beserta rmse pada sebaris (tidak digunakan #cadangan)

    #Pengulangan compiling per kota
    for j in range(len(listkota)):
        if (len(listhasil[j][1]) != len(listtahun)):
            jlhprediksi = len(listtahun) - len(
                hasil[listkota[j]]) + (6) - 1  #prediksi sampai 2020
        else:
            jlhprediksi = (6) - 1  #prediksi sampai 2020

        datatahun_crops = listhasil[j][1]  #dapat data json crops dan tahun
        datatahun = list(
            datatahun_crops.keys())  #dapat data tahun pada satu daerah
        datatahunint = [int(x) for x in datatahun]  #konversi ke integer

        arraytahun = np.array(datatahunint)  #dibuat jadi array
        sorttahun = np.sort(arraytahun)  #sort dalam bentuk array
        datatahun_daerah = list(sorttahun)  #buat lagi jadi list
        datalengkaptahun.append(datatahun_daerah)

        for n in range(len(
                listhasil[j][1])):  #listhasil[j][1] = data tahun dan crops
            datacrops.append(float(listhasil[j][1][str(datatahun_daerah[n])]))
        datalengkapcrops.append(datacrops)
        datacrops = []

    # print(datalengkapcrops)
    # print(datalengkaptahun)
    listcrops_daerah = []
    hasillistcrops_daerah = []

    for i in range(len(listkota)):
        for j in range(len(datalengkapcrops[i])):
            listcrops_daerah.append([datalengkapcrops[i][j]
                                     ])  #pecah per tahun crops dalam satu list
        hasillistcrops_daerah.append(listcrops_daerah)
        listcrops_daerah = []

    # for i in range(len(listkota)):
    #     arraycrops_semua=np.array(hasillistcrops_daerah[i])
    # print(arraycrops_semua[0:20])

    arraycrops_semua = np.array(hasillistcrops_daerah)

    for i in range(len(listkota)):
        data = DataLoader(np.array(arraycrops_semua[i]),
                          configs['data']['train_test_split'])

        model = Model()
        model.build_model(configs)
        x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                                   normalise=configs['data']['normalise'])

        # in-memory training
        model.train(x,
                    y,
                    epochs=configs['training']['epochs'],
                    batch_size=configs['training']['batch_size'],
                    save_dir=configs['model']['save_dir'])

        # Yogyakarta: Kulon progo, bantul, gunung kidul, sleman, DIY
        # Jawa Barat: Bandung, Tasikmalaya, Majalengka, Cirebon, Kuningan, Garut, Sumedang, Cianjut, Subang, Purwakarta, Indramayu
        # Ciamis, Sukabumi, Bogor, Bekasi, Karawang

        # # out-of memory generative training
        # steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
        # model.train_generator(
        #     data_gen=data.generate_train_batch(
        #         seq_len=configs['data']['sequence_length'],
        #         batch_size=configs['training']['batch_size'],
        #         normalise=configs['data']['normalise']
        #     ),
        #     epochs=configs['training']['epochs'],
        #     batch_size=configs['training']['batch_size'],
        #     steps_per_epoch=steps_per_epoch,
        #     save_dir=configs['model']['save_dir']
        # )

        # # save_dir = configs['model']['save_dir']

        x_test, y_test = data.get_test_data(
            seq_len=configs['data']['sequence_length'],
            normalise=configs['data']['normalise'])

        # print(x_test)
        # print(y_test)

        # predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])

        predictions_point = model.predict_point_by_point(x_test)
        print(len(predictions_point))

        for ulang in range(len(datalengkaptahun[i]) - len(predictions_point)):
            datalengkaptahun[i].remove(
                datalengkaptahun[i]
                [ulang])  #for equality number of ground truth and prediction

        # Use the plot when you want to see the data graphically
        # plot_results(predictions_point, y_test,datalengkaptahun[i],listkota[i])

        groundtrue = data._groundtruths(1)
        groundtrue = (groundtrue.ravel())
        # print(len(groundtrue))

        #Measure the RMSE
        RMSElist = []
        for k in range(len(predictions_point)):
            errorrate = groundtrue[k + ulang] - predictions_point[k]
            hasilkuadrat = errorrate * errorrate
            RMSElist.append(hasilkuadrat)
        RMSE = sum(RMSElist) / (len(predictions_point))
        RMSE = RMSE**(1 / 2)
        # print(RMSE)

        getdataforecast = data._forecasting(jlhprediksi, jlhprediksi)
        # print(len(getdataforecast))

        total_prediksi = jlhprediksi
        takefrom = jlhprediksi
        forecast_result = model.forecast(total_prediksi, getdataforecast,
                                         takefrom)
        # print(len(forecast_result))
        # print(forecast_result[0])
        # forecast_result=np.append(forecast_result,[0.0])
        # print(forecast_result)

        n_steps = 8
        # split into samples
        X, y = split_sequence(forecast_result, n_steps)
        # reshape from [samples, timesteps] into [samples, timesteps, features]
        n_features = 1
        # print(X)
        X = X.reshape((X.shape[0], X.shape[1], n_features))
        # define model
        model = Sequential()
        model.add(
            LSTM(50, activation='relu', input_shape=(n_steps, n_features)))
        model.add(Dense(1))
        model.compile(optimizer='adam', loss='mse')
        # fit model
        model.fit(X, y, epochs=200, verbose=0)

        #make the number of predictions is equal to the number of the ground truth
        hasilprediksi = []
        hasilprediksi.append(groundtrue[-(ulang + 1):-ulang])
        hasilprediksi.append(groundtrue[-ulang:])

        for j in range(total_prediksi):
            getxlastnumber = array(forecast_result[(-n_steps - 1):-1])
            x_input = getxlastnumber
            # print(x_input)

            x_input = x_input.reshape((1, n_steps, n_features))
            yhat = model.predict(x_input, verbose=0)
            # print(yhat[0][0])

            hasilprediksi.append(yhat[0])  #untuk dikirimkan ke json
            forecast_result = np.append(forecast_result,
                                        yhat[0])  #untuk training forecast
            groundtrue = np.append(groundtrue,
                                   yhat[0])  #untuk plotting ke grafik

            # print(len(groundtrue))
            # prediction_point=np.append(prediction_point,yhat[0])
        # print(hasilprediksi)      #hasilprediksi dalam bentuk array, hasilprediksi[0] dalam bntk list, hasilprediksi[0][0] dalam bentuk skalar

        semuatahun = datalengkaptahun[i]
        tahunbaru = []
        terakhirtahun = datalengkaptahun[i][len(datalengkaptahun[i]) - 1]

        rangetahun_input = len(groundtrue) - len(datalengkaptahun[i])
        # print(rangetahun_input)

        if (len(datalengkaptahun[i]) < len(groundtrue)):
            for z in range(rangetahun_input):
                semuatahun.append(terakhirtahun)  #untuk grafik
                tahunbaru.append(terakhirtahun)  #untuk dikirimkan ke json
                terakhirtahun = terakhirtahun + 1
        # print(tahunbaru)

        # Use the plot when you want to see the data graphically
        # plot_results_onlypredicted(semuatahun,groundtrue,listkota[i])

        #To check the length of ground true is equal to the datalengkaptahun[i] or the number of years record at specific Entity
        # print(len(groundtrue))
        # print(len(datalengkaptahun[i]))

        # semuahasil_csv=[]
        # csv_data_kota=duplikathasil.get(column).values[:]

        #To record all data into LIST to make CSV
        for jlh in range(len(semuatahun)):
            kota_untuk_csv.append(listkota[i])
            kode_untuk_csv.append(kodekota[i])
            RMSE_untuk_csv.append(RMSE[0])
            tahun_untuk_csv.append(semuatahun[jlh])
            crops_untuk_csv.append(groundtrue[jlh])

        #Alternative solution for csv
        # for jlh in range(len(datalengkapcrops[i])):
        #     kota_untuk_csv.append(listkota[i])
        #     kode_untuk_csv.append(kodekota[i])
        #     # tahun_untuk_csv.append(datalengkaptahun[i][jlh])
        #     # crops_untuk_csv.append(datalengkapcrops[i][jlh])
        #     RMSE_untuk_csv.append(RMSE[0])

        # for jlh in range (rangetahun_input):
        #     kota_untuk_csv.append(listkota[i])
        #     kode_untuk_csv.append(kodekota[i])
        #     # tahun_untuk_csv.append(tahunbaru[jlh])
        #     # crops_untuk_csv.append(hasilprediksi[jlh][0])
        #     RMSE_untuk_csv.append(RMSE[0])

        HasilCSV = {
            'Entity': kota_untuk_csv,
            'Code': kode_untuk_csv,
            'Year': tahun_untuk_csv,
            ' crop(tonnes per hectare)': crops_untuk_csv,
            'RMSE': RMSE_untuk_csv
        }
        df = DataFrame(HasilCSV,
                       columns=[
                           'Entity', 'Code', 'Year',
                           ' crop(tonnes per hectare)', 'RMSE'
                       ])
        print(df)

        filebaca_csv = configs["data"]["newcsv"]
        filebaca_csv1 = configs["data"]["newcsv1"]

        #name of data export can be changed through configcrops.json (variable filebaca_csv and filebacacsv1 only for explanation)
        export_csv = df.to_csv(
            r'/home/biovick/Downloads/tkte/sudiro/Forecasting-and-Predicting Crops into Visualization/data/newTomatov2.csv',
            index=False)
コード例 #24
0
def main():
    configs = json.load(open('point_to_point_similar_sinewave.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']): os.makedirs(configs['model']['save_dir'])

    data = DataLoader(
        os.path.join('data', configs['data']['filename']),
        configs['data']['train_test_split'],
        configs['data']['columns']
    )

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )


    # in-memory training
    model.train(
		x,
		y,
		epochs = configs['training']['epochs'],
		batch_size = configs['training']['batch_size'],
		save_dir = configs['model']['save_dir']
	)

    # out-of memory generative training
    # steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    # model.train_generator(
    #     data_gen=data.generate_train_batch(
    #         seq_len=configs['data']['sequence_length'],
    #         batch_size=configs['training']['batch_size'],
    #         normalise=configs['data']['normalise']
    #     ),
    #     epochs=configs['training']['epochs'],
    #     batch_size=configs['training']['batch_size'],
    #     steps_per_epoch=steps_per_epoch,
    #     save_dir=configs['model']['save_dir']
    # )

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise']
    )

    # predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    # predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)

    predictions = predictions.reshape(-1, 1)
    normalized_test = data.get_normalized_test()
    normalized_test = np.delete(normalized_test, [j for j in range(len(predictions), len(normalized_test))], axis=0)
    my_normalized_test = np.delete(normalized_test, [0], axis=1)
    # my_normalized_test = np.delete(my_normalized_test, [j for j in range(len(predictions), len(my_normalized_test))], axis=0)

    final_data = np.hstack((predictions, my_normalized_test))
    actual_predictions = data.inverse_data(final_data)
    predictions = actual_predictions[:, 0]
    actual_test = data.inverse_data(normalized_test)
    y_test = actual_test[:, 0]
    # plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
    plot_results(predictions, y_test)

    mse = mean_squared_error(y_test, predictions)
    print("Mean Squared Error: " + str(mse))

    print("Root Mean Squared Error: " + str(math.sqrt(mse)))

    mae = mean_absolute_error(y_test, predictions)
    print("Mean Absolute Error: " + str(mae))

    r2 = r2_score(y_test, predictions)
    print("R Squared Error: " + str(r2))
コード例 #25
0
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])

    lossesMINE = []
    lossesKERAS = []
    # for day_prediction in [1, 2, 3, 4, 5, 10, 50]:
    day_prediction = 10
    print("Predicting %i days..." % day_prediction)

    model = Model()
    model.build_model(configs)
    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'],
                               day_pred=day_prediction)

    # in-memory training
    model.train(x,
                y,
                epochs=configs['training']['epochs'],
                batch_size=configs['training']['batch_size'],
                save_dir=configs['model']['save_dir'])

    # out-of memory generative training

    # steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
    # model.train_generator(
    #     data_gen=data.generate_train_batch(
    #         seq_len=configs['data']['sequence_length'],
    #         batch_size=configs['training']['batch_size'],
    #         normalise=configs['data']['normalise'],
    #         day_pred=day_prediction
    #     ),
    #     epochs=configs['training']['epochs'],
    #     batch_size=configs['training']['batch_size'],
    #     steps_per_epoch=steps_per_epoch,
    #     save_dir=configs['model']['save_dir']
    # )

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'],
        day_pred=day_prediction)

    # print(x_test.shape)
    # print(len(data.denormalization_vals))
    # print(y_test.shape)

    #predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    #predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)
    #
    # y_test_unormalized = np.zeros((y_test.shape[0], ))
    # prediction_unormalized = []
    #
    # for i in range(4):
    #     for j in range(int(configs['data']['sequence_length']) - 10):
    #         y_test_unormalized[j*(i+1)] = (y_test[j] + 1)*data.data_test[i*int(configs['data']['sequence_length']), 0]
    #         prediction_unormalized.append((predictions[j*(i+1)] + 1)*data.data_test[i*int(configs['data']['sequence_length']), 0])

    npPredictions = np.asarray(predictions)
    # print(type(npPredictions))
    # print(type(y_test))
    # print(npPredictions.shape)
    # print(y_test.shape)
    loss = 0
    for i in range(len(npPredictions)):
        loss += (npPredictions[i] - y_test[i])**2
    print(loss)
    keras_loss = model.model.evaluate(x_test, y_test)
    print(keras_loss)

    lossesMINE.append(loss)
    lossesKERAS.append(keras_loss)

    #plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])

    real_y = np.reshape(y_test, (y_test.shape[0], )) * np.asarray(
        data.denormalization_vals) + np.asarray(data.denormalization_vals)
    real_pred = predictions * np.asarray(
        data.denormalization_vals) + np.asarray(data.denormalization_vals)
    # print(real_y.shape)
    # print(real_pred.shape)
    data.denormalization_vals = []

    #plot_results(predictions, y_test)

    plot_results(real_pred, real_y)

    print(lossesMINE)
    print(lossesKERAS)
コード例 #26
0
ファイル: run.py プロジェクト: zebointexas/All_Projects
def main():

    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])

    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'])

    model = Model()

    # model.build_model(configs)
    model.load_model("saved_models/dow_30_50%.h5")

    x, y = data.get_train_data(seq_len=configs['data']['sequence_length'],
                               normalise=configs['data']['normalise'])

    # out-of memory generative training
    steps_per_epoch = math.ceil(
        (data.len_train - configs['data']['sequence_length']) /
        configs['training']['batch_size'])

    model.train_generator(data_gen=data.generate_train_batch(
        seq_len=configs['data']['sequence_length'],
        batch_size=configs['training']['batch_size'],
        normalise=configs['data']['normalise']),
                          epochs=configs['training']['epochs'],
                          batch_size=configs['training']['batch_size'],
                          steps_per_epoch=steps_per_epoch,
                          save_dir=configs['model']['save_dir'])

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    print("x_test.shape")
    print(x_test.shape)

    predictions = model.predict_point_by_point(x_test)

    ########################################################################
    from sklearn.metrics import mean_squared_error
    # loss_final = mean_squared_error(predictions, y_test)
    # print("Testing Loss = " + str(loss_final))
    ########################################################################

    # plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])

    print(predictions.shape)
    print(y_test.shape)

    m = pd.DataFrame(predictions)
    n = pd.DataFrame(y_test)

    m.to_csv("predictions.csv")
    n.to_csv("y_test.csv")

    p = 0
    t = 0

    t_1 = 0

    count = 0

    for a in range(len(predictions)):

        if (a == 0):
            t_1 = y_test[a]
            continue
        '''
            1 1 1 1 1 1 1 1 1
            1 1 1 1 1 1 1 1 1
        
        '''

        p = predictions[a]
        t = y_test[a]

        match = (t - t_1) * (p - t_1)

        if (match > 0):
            count += 1

        t_1 = t

    print("Good prediction rate = " + str(count / len(predictions)))

    plot_results(predictions, y_test)
コード例 #27
0
def main():
    configs = json.load(open('config.json', 'r'))
    if not os.path.exists(configs['model']['save_dir']):
        os.makedirs(configs['model']['save_dir'])
    if not os.path.exists(configs['data']['data picture save dir']):
        os.makedirs(configs['data']['data picture save dir'])

    data = DataLoader(os.path.join('data', configs['data']['filename']),
                      configs['data']['train_test_split'],
                      configs['data']['columns'], configs['data']['id'])

    model = Model()
    model.build_model(configs)

    # x, y = data.get_train_data(
    #     seq_len=configs['data']['sequence_length'],
    #     normalise=configs['data']['normalise']
    # )
    '''
	# in-memory training
	model.train(
		x,
		y,
		epochs = configs['training']['epochs'],
		batch_size = configs['training']['batch_size'],
		save_dir = configs['model']['save_dir']
	)
	'''
    # out-of memory generative training
    steps_per_epoch = math.ceil(
        (data.len_train - configs['data']['sequence_length']) /
        configs['training']['batch_size'])
    model.train_generator(data_gen=data.generate_train_batch(
        seq_len=configs['data']['sequence_length'],
        batch_size=configs['training']['batch_size'],
        normalise=configs['data']['normalise']),
                          epochs=configs['training']['epochs'],
                          batch_size=configs['training']['batch_size'],
                          steps_per_epoch=steps_per_epoch,
                          save_dir=configs['model']['save_dir'])

    x_test, y_test = data.get_test_data(
        seq_len=configs['data']['sequence_length'],
        normalise=configs['data']['normalise'])

    #predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
    # predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
    predictions = model.predict_point_by_point(x_test)

    sess = backend.get_session()

    rmsee = backend.mean(rmse(y_test, predictions), axis=0)
    msee = backend.mean(mse(y_test, predictions), axis=0)

    with sess.as_default():
        mse_val = msee.eval()
        rmse_val = rmsee.eval()
        print("mse:", mse_val)
        print("rmse:", rmse_val)

    #plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
    plot_results(predictions, y_test, configs['data']['data picture save dir'],
                 configs['data']['id'])

    with open("note.txt", 'a+') as f:
        f.write(
            '\n%s-e%s.h5:\n' %
            (dt.datetime.now().strftime('%m%d-%H%M%S'), configs['data']['id']))
        f.write("data split:%f\n" % configs["data"]["train_test_split"])
        f.write("epochs:%d\n" % configs["training"]["epochs"])
        f.write("batch size:%d\n" % configs["training"]["batch_size"])
        f.write("mse:%f\n" % mse_val)
        f.write("rmse:%f\n" % rmse_val)
        f.write("notes:%s\n" % configs['data']['note'])
コード例 #28
0
# start training PBP model
model_PBP.train_generator(
    data_gen=data.generate_train_batch(
        seq_len=configs['data']['sequence_length'],
        batch_size=configs['training']['batch_size'],
        normalise=configs['data']['normalise']
    ),
    epochs=configs['training']['epochs'],
    batch_size=configs['training']['batch_size'],
    steps_per_epoch=steps_per_epoch,
    save_dir=configs['model']['save_dir']
)

# start predicting
predictions_PBP = model_PBP.predict_point_by_point(x_test)

# save the model
pickle.dump(model_PBP, open("model_PBP_baseline.pkl", 'wb'))



# same for multi-sequence predicting
model_MS = Model()
model_MS.build_model(configs)

model_MS.train_generator(
    data_gen=data.generate_train_batch(
        seq_len=configs['data']['sequence_length'],
        batch_size=configs['training']['batch_size'],
        normalise=configs['data']['normalise']
コード例 #29
0
    return predicted


def predict_sequence_full(self, data, window_size):
    #Shift the window by 1 new prediction each time, re-run predictions on new window
    curr_frame = data[0]
    predicted = []
    for i in range(len(data)):
        predicted.append(self.model.predict(curr_frame[newaxis, :, :])[0, 0])
        curr_frame = curr_frame[1:]
        curr_frame = np.insert(curr_frame, [window_size - 2],
                               predicted[-1],
                               axis=0)
    return predicted


def plot_results(predicted_data, true_data):
    fig = plt.figure(facecolor='white')
    ax = fig.add_subplot(111)
    ax.plot(true_data, label='True Data')
    plt.plot(predicted_data, label='Prediction')
    plt.legend()
    plt.show()


predictions_pointbypoint = model.predict_point_by_point(x_test)
plot_results(predictions_pointbypoint, y_test)

predictions_fullseq = model.predict_sequence_full(
    x_test, configs['data']['sequence_length'])
plot_results(predictions_fullseq, y_test)