def train_rnet(model_store_path, end_epoch, imdb, batch_size, frequent=50, base_lr=0.01, use_cuda=True): if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() net = RNet(is_train=True, use_cuda=use_cuda) net.train() if use_cuda: net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr) train_data = TrainImageReader(imdb, 24, batch_size, shuffle=True) for cur_epoch in range(1, end_epoch + 1): train_data.reset() for batch_idx, (image, (gt_label, gt_bbox, gt_landmark)) in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i, :, :, :]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor) im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) if use_cuda: im_tensor = im_tensor.cuda() gt_label = gt_label.cuda() gt_bbox = gt_bbox.cuda() gt_landmark = gt_landmark.cuda() cls_pred, box_offset_pred = net(im_tensor) # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred) cls_loss = lossfn.cls_loss(gt_label, cls_pred) box_offset_loss = lossfn.box_loss(gt_label, gt_bbox, box_offset_pred) # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred) all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 if batch_idx % frequent == 0: accuracy = compute_accuracy(cls_pred, gt_label) show1 = accuracy.data.cpu().numpy() show2 = cls_loss.data.cpu().numpy() show3 = box_offset_loss.data.cpu().numpy() # show4 = landmark_loss.data.cpu().numpy() show5 = all_loss.data.cpu().numpy() print( "%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s " % (datetime.datetime.now(), cur_epoch, batch_idx, show1, show2, show3, show5, base_lr)) optimizer.zero_grad() all_loss.backward() optimizer.step() torch.save( net.state_dict(), os.path.join(model_store_path, "rnet_epoch_%d.pt" % cur_epoch)) torch.save( net, os.path.join(model_store_path, "rnet_epoch_model_%d.pkl" % cur_epoch))
def train_rnet(self, train_data_path): device = torch.device('cuda') lossfn = LossFn() net = RNet() # 返回 一样的 net = net.to(device) net.to(device) # 切换到train 状态 net.eval() 测试状态 net.train() # print(net) optimizer = torch.optim.Adam(net.parameters(), lr=1e-3) self.viz.line(Y=torch.FloatTensor([0.]), X=torch.FloatTensor([0.]), win='rnet_train_loss', opts=dict(title='train loss')) # 加载数据 ratios ==> pos:part:neg:landmark trian_datasets = DataReader(train_data_path, im_size=24, transform=self.trainTransform, batch_size=4096, ratios=(1, 1, 3, 2)) for epoch in range(1): print("epoch:", epoch) for step, (imgs, cls_labels, rois, landmarks) in enumerate(trian_datasets): # [b, 3, 24, 24],[b],[4],[10] imgs = imgs.to(device) cls_labels = cls_labels.to(device) rois = rois.to(device) landmarks = landmarks.to(device) cls_pred, box_offset_pred, landmarks_pred = net(imgs) # 貌似这里打印最后一个的loss,对于整体来说不怎么准确 cls_loss = lossfn.cls_loss(cls_labels, cls_pred) box_offset_loss = lossfn.box_loss(cls_labels, rois, box_offset_pred) landmark_loss = lossfn.landmark_loss(cls_labels, landmarks, landmarks_pred) print("cls_loss:", cls_loss) print("box_offset_loss:", box_offset_loss) print("landmark_loss:", landmark_loss) all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 + landmark_loss * 0.5 self.viz.line(Y=torch.FloatTensor([all_loss]), X=torch.FloatTensor([step]), win='rnet_train_loss', update='append') optimizer.zero_grad() all_loss.backward() optimizer.step() print("all_loss:", all_loss) print("-" * 40, "step:", step, "-" * 40) if step % 1000 == 0: accuracy = compute_accuracy(cls_pred, cls_labels, threshold=0.7) recoll = compute_recoll(cls_pred, cls_labels, threshold=0.7) print( "=" * 80, "\n\n=> acc:{}\n=> recoll:{}\n\n".format( accuracy, recoll), "=" * 80) if step % 1000 == 0: torch.save( net.state_dict(), os.path.join("../data/models/", "rnet_epoch_%d.pt" % epoch)) torch.save( net, os.path.join("../data/models/", "rnet_epoch_model_%d.pkl" % epoch)) epoch += 1