コード例 #1
0
    def create_sample_graph(data1: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # Conv1
        w1 = Constant('weight1', Float32(), data1)
        conv1 = Conv('conv1', [1, 4, 4, 3],
                     QUANTIZED_PACKED(), {
                         'X': x,
                         'W': w1
                     },
                     kernel_shape=[2, 2])
        conv1.is_quantized = True

        pool1 = SpaceToDepth('s2d', [1, 2, 2, 12], Float32(), {'input': conv1})

        # One output
        y = Output('output', [1, 2, 2, 12], Float32(), {'input': pool1})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
コード例 #2
0
    def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # Conv1
        w1 = Constant('weight1', Float32(), data1)
        conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2])

        # activation quantizer
        s1 = Constant('aq_const1', Int32(), np.array([2], dtype=np.int32))
        s2 = Constant('aq_const2', Float32(), np.array([2.0], dtype=np.float32))
        aq1 = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2})

        # Conv2
        w2 = Constant('weight2', Float32(), data2)
        kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2})
        conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq1, 'W': kq}, kernel_shape=[2, 2])
        conv2.a_quantizer = [aq1]
        conv2.quantizer = kq
        conv2.is_quantized = True

        sc = Constant('bn_scale', Float32(), np.random.rand(3))
        be = Constant('bn_b', Float32(), np.random.rand(3))
        mu = Constant('bn_mu', Float32(), np.random.rand(3))
        va = Constant('bn_var', Float32(), np.random.rand(3))
        bn = BatchNormalization('bn', [1, 3, 3, 3], Float32(), {'X': conv2,
                                                                'scale': sc,
                                                                'B': be,
                                                                'mean': mu,
                                                                'var': va})

        # activation quantizer
        s3 = Constant('aq_const3', Int32(), np.array([2], dtype=np.int32))
        s4 = Constant('aq_const4', Float32(), np.array([2.0], dtype=np.float32))
        aq2 = QTZ_linear_mid_tread_half('aqtz2', [1, 3, 3, 3], Float32(), {'X': bn, 'Y': s3, 'Z': s4})

        # One output
        y = Output('output', [1, 3, 3, 3], Float32(), {'input': aq2})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
コード例 #3
0
ファイル: optimizer.py プロジェクト: tkng/blueoil
    def run_forward_conv(self, node: Conv, **kwargs: Any) -> None:
        ops: List[Operator] = [
            node.input_ops[i] for i in node.input_names
            if node.input_ops.get(i)
        ]

        if self._hard_quantized and node in kwargs['qconv']:
            # data is to be packed
            ops_have_precomp_values = list(
                map(lambda x: self._has_precompute_value(x), ops))
            ops_are_prunable = list(map(lambda x: self._is_prunable(x), ops))

            # check which input node can be pruned
            if reduce(
                    lambda x, y: x and y,
                    ops_have_precomp_values):  # all input has concrete values
                node.run_forward()
                self._precomp_dic[node.name] = True  # this node can be pruned
                quantizers = {
                    op.name: self._quantizers[op.name]
                    for op in ops if self._quantizers.get(op.name)
                }
                if len(quantizers) > 1:
                    ValueError(
                        f'{node.name}: multiple quantized inputs with {node.op_type} are not supported.'
                    )
                self._quantizers[node.name] = list(quantizers.values())[0]

            else:  # an input (must be weight) is to be quantized and packed
                self._precomp_dic[node.name] = False
                node.is_quantized = True
                packer = Packer(self._quantized_bitwidth, self._wordsize)
                quantizers = {
                    op.name: self._quantizers[op.name]
                    for op in ops if self._quantizers.get(op.name)
                }
                if len(quantizers) > 1:
                    ValueError(
                        f'{node.name}: multiple quantized inputs with {node.op_type} are not supported.'
                    )
                node.quantizer = list(quantizers.values())[0]

                for key, op in zip(node.input_names, ops):

                    if self._is_prunable(op):
                        shape = op.shape
                        op_data = node.quantizer.binarizer(op.data)
                        data = packer.run(op_data.astype(np.float32),
                                          op.dimension)
                        dtype = op.dtype
                        new_op = Constant(op.name + '_new',
                                          dtype,
                                          data,
                                          packed=True,
                                          actual_shape=shape)
                        node.add_input(key, new_op)
                        self._graph.add_op(new_op)
                        self._prune(op)

        else:
            self._precompute_or_prune_inputs(node)