コード例 #1
0
    def _generate(self,
                  feature_map_shape,
                  scales,
                  aspect_ratios,
                  input_size,
                  device='cuda'):
        """
        """
        # shape(A,)

        ratios_sqrt = torch.sqrt(aspect_ratios)
        heights = scales * ratios_sqrt * self.base_anchor_size.to(device)
        widths = scales / ratios_sqrt * self.base_anchor_size.to(device)
        anchor_stride = [
            input_size[0] / feature_map_shape[0],
            input_size[1] / feature_map_shape[1]
        ]

        y_ctrs = torch.arange(
            feature_map_shape[0], device=device
        ) * anchor_stride[0] + self.anchor_offset[0].to(device).float()
        x_ctrs = torch.arange(
            feature_map_shape[1], device=device
        ) * anchor_stride[1] + self.anchor_offset[1].to(device)
        y_ctrs = y_ctrs.float()
        x_ctrs = x_ctrs.float()

        # meshgrid
        # shape(H*W,)
        x_ctrs, y_ctrs = ops.meshgrid(x_ctrs, y_ctrs)

        # shape(K*A,)
        heights, x_ctrs = ops.meshgrid(heights, x_ctrs)
        widths, y_ctrs = ops.meshgrid(widths, y_ctrs)

        xmin = x_ctrs - 0.5 * (widths - 1)
        ymin = y_ctrs - 0.5 * (heights - 1)
        xmax = x_ctrs + 0.5 * (widths - 1)
        ymax = y_ctrs + 0.5 * (heights - 1)

        # (x,y,h,w)
        return torch.stack([xmin, ymin, xmax, ymax], dim=1)
コード例 #2
0
    def generate_voxels(self):
        """
        generate all voxels in ground plane
        """
        lattice_dims = self.grid_dims / self.voxel_size
        self.lattice_dims = lattice_dims
        x_inds = torch.arange(0, lattice_dims[0]).cuda()
        y_inds = torch.arange(0, lattice_dims[1]).cuda()
        z_inds = torch.arange(0, lattice_dims[2]).cuda()
        z_inds, x_inds = ops.meshgrid(z_inds, x_inds)

        y_inds1, z_inds = ops.meshgrid(y_inds, z_inds)
        y_inds2, x_inds = ops.meshgrid(y_inds, x_inds)
        y_inds = y_inds1

        corner_coords = torch.stack([x_inds, y_inds, z_inds], dim=-1).float()
        corner_coords *= self.voxel_size

        center_offset = torch.tensor([0.5 * self.voxel_size] *
                                     3).type_as(corner_coords)
        center_coords = corner_coords + center_offset

        high_interval = self.high_interval
        # bugs here
        # y_offset = (high_interval[0] + high_interval[1]) / 2
        y_offset = high_interval[0]

        original_offset = [-0.5 * self.grid_dims[0], y_offset, self.z_offset]
        # original_offset  = self.original_offset
        original_offset = torch.tensor(original_offset).type_as(center_coords)
        center_coords = center_coords + original_offset

        # tmp_coords = torch.tensor(
        # [[-16.53, 2.39, 58.49]]).type_as(center_coords)

        # center_coords = torch.cat([center_coords, tmp_coords])
        self.voxel_centers = center_coords

        return center_coords
コード例 #3
0
ファイル: anchor_generator.py プロジェクト: xang1234/MonoDIS
    def generate(self, feature_map_list, im_shape):
        """
        Args:
            feature_map_list, list of (stride, ratio)
        Returns:
            anchors
        """
        anchors_list = []
        scales, aspect_ratios = ops.meshgrid(self.scales, self.aspect_ratios)
        for feature_map_shape in feature_map_list:
            anchors_list.append(
                self._generate(feature_map_shape, scales, aspect_ratios,
                               im_shape))

        return torch.cat(anchors_list, dim=0)
コード例 #4
0
    def generate(self, feature_map_list, input_size, device='cuda'):
        """
        Args:
            feature_map_list, list of (stride, ratio)
        Returns:
            anchors
        """
        anchors_list = []
        scales, aspect_ratios = ops.meshgrid(self.scales.to(device),
                                             self.aspect_ratios.to(device))
        for feature_map_shape in feature_map_list:
            anchors_list.append(
                self._generate(feature_map_shape, scales, aspect_ratios,
                               input_size, device))

        return torch.cat(anchors_list, dim=0)
コード例 #5
0
ファイル: oft_model.py プロジェクト: xang1234/MonoDIS
    def nms_map(self, smoothed_fg_mask):
        """
        supress the neibor
        """

        directions = [-1, 0, 1]
        shape = smoothed_fg_mask.shape
        orig_index = (torch.arange(shape[0]).cuda().long(),
                      torch.arange(shape[1]).cuda().long())
        orig_index = ops.meshgrid(orig_index[1], orig_index[0])
        orig_index = [orig_index[1], orig_index[0]]
        dest_indexes = []
        for i in directions:
            for j in directions:
                dest_index = (orig_index[0] + directions[i],
                              orig_index[1] + directions[j])
                dest_indexes.append(dest_index)

        nms_filter = torch.ones_like(smoothed_fg_mask).byte()
        orig_fg_mask = smoothed_fg_mask

        # pad fg mask first to prevent out of boundary
        padded_smoothed_fg_mask = torch.zeros(
            (shape[0] + 1, shape[1] + 1)).type_as(smoothed_fg_mask)
        padded_smoothed_fg_mask[:-1, :-1] = smoothed_fg_mask

        # import ipdb
        # ipdb.set_trace()
        for dest_index in dest_indexes:
            nms_filter = nms_filter & (
                orig_fg_mask >=
                padded_smoothed_fg_mask[dest_index].view_as(orig_fg_mask))

        # surpress
        smoothed_fg_mask[~nms_filter] = 0
        return smoothed_fg_mask
コード例 #6
0
    def _assign_classification_targets(self, match, gt_labels, inter_boxes,
                                       proposals):
        """
        Generate cls map for segmentation loss
        Args:
            pass
        Returns:
            cls_map_targets
        """
        # hard code
        pooling_size = 8

        # get label for each bbox
        batch_size = match.shape[0]
        offset = torch.arange(0, batch_size) * gt_labels.size(1)
        match += offset.view(batch_size, 1).type_as(match)
        cls_targets_batch = gt_labels.view(-1)[match.view(-1)].view(
            batch_size, match.shape[1])

        # set bg
        cls_targets_batch[match == -1] = 0

        # generate map according to label for segmentation loss

        h = proposals[:, :, 3] - proposals[:, :, 1]
        w = proposals[:, :, 2] - proposals[:, :, 0]
        sub_bin_w = w / pooling_size
        sub_bin_h = h / pooling_size
        # pass

        offset_xmin = inter_boxes[:, :, 0] - proposals[:, :, 0]
        offset_xmax = inter_boxes[:, :, 2] - proposals[:, :, 0]
        offset_ymin = inter_boxes[:, :, 1] - proposals[:, :, 1]
        offset_ymax = inter_boxes[:, :, 3] - proposals[:, :, 1]

        offset_xmin_ind = (offset_xmin / sub_bin_w).round().int()
        offset_ymin_ind = (offset_ymin / sub_bin_h).round().int()
        offset_xmax_ind = (offset_xmax / sub_bin_w).round().int()
        offset_ymax_ind = (offset_ymax / sub_bin_h).round().int()

        # select not empty bbox from inter boxes
        # cond = (inter_boxes[:, :, 2] - inter_boxes[:, :, 0] + 1 > 0) & (
        # inter_boxes[:, :, 3] - inter_boxes[:, :, 1] + 1 > 0)

        # import ipdb
        # ipdb.set_trace()
        num = pooling_size * pooling_size
        offset_xmin_ind = offset_xmin_ind.unsqueeze(-1).expand(-1, -1, num)
        offset_ymin_ind = offset_ymin_ind.unsqueeze(-1).expand(-1, -1, num)
        offset_xmax_ind = offset_xmax_ind.unsqueeze(-1).expand(-1, -1, num)
        offset_ymax_ind = offset_ymax_ind.unsqueeze(-1).expand(-1, -1, num)

        x = torch.range(0, pooling_size - 1).type_as(offset_xmin_ind)
        y = torch.range(0, pooling_size - 1).type_as(offset_xmin_ind)
        xx, yy = ops.meshgrid(x, y)
        coord = torch.stack([xx, yy], dim=-1)
        coord = coord.expand(inter_boxes.shape[0], inter_boxes.shape[1], -1,
                             -1)

        # shape(N,M,49)
        cond = (coord[:, :, :, 0] <
                offset_xmax_ind) & (coord[:, :, :, 0] >= offset_xmin_ind) & (
                    coord[:, :, :, 1] < offset_ymax_ind) & (coord[:, :, :, 1]
                                                            >= offset_ymin_ind)
        # torch.nonzero(cond)
        # cls_gate_map shape(N,M,49)
        # cond = cond.view(cond.shape[0], cond.shape[1], pooling_size,
        # pooling_size)
        cls_gate_map = cond.int()

        # reverse when bg
        #  cls_gate_map[cls_targets_batch == 0] = (
        #  1 - cls_gate_map)[cls_targets_batch == 0]

        return cls_gate_map.long()