コード例 #1
0
 def create_balanced_tree():
     """Tree: {None: 1}{1: 2}{1: 3}{2:4}{3: 6}{3: 7}"""
     tree = Tree()
     tree.insert(Node(4, parent_name=None))
     tree.insert(Node(2, parent_name=4))
     tree.insert(Node(6, parent_name=4))
     tree.insert(Node(3, parent_name=2))
     tree.insert(Node(5, parent_name=6))
     tree.insert(Node(7, parent_name=6))
     return tree
コード例 #2
0
 def create_complete_tree():
     """Tree: {None: 4}{4: 2}{4: 6}{2: 1}{2: 3}{6: 5}"""
     tree = Tree()
     tree.insert(Node(4, parent_name=None))
     tree.insert(Node(2, parent_name=4))
     tree.insert(Node(6, parent_name=4))
     tree.insert(Node(1, parent_name=2))
     tree.insert(Node(3, parent_name=2))
     tree.insert(Node(5, parent_name=6))
     return tree
コード例 #3
0
ファイル: test_tree.py プロジェクト: stitchfix/arboreal
 def test_tree_print_with_two_children(self):
     root = Node(name="first_level")
     t = Tree(root=root, name="root")
     left = Node(name="second_level_one")
     right = Node(name="second_level_two")
     t.root.add_child(left)
     t.root.add_child(right)
     expected = (
         "<Tree 'root'>\n<Node first_level>\n\t<Node second_level_one>\n\t")
     expected += "<Node second_level_two>"  # ...
     self.assertEqual(str(t), expected)
コード例 #4
0
ファイル: test_tree.py プロジェクト: stitchfix/arboreal
 def test_tree_constructor(self):
     t = Tree(name="spruce")
     self.assertEqual(t.name, "spruce")
     self.assertIsNotNone(t.root)
コード例 #5
0
ファイル: test_tree.py プロジェクト: stitchfix/arboreal
 def test_tree_print_with_one_child(self):
     t = Tree()
     left = Node(name="left")
     t.root.add_child(left)
     expected = "<Tree 'None'>\n<Node None>\n\t<Node left>"
     self.assertEqual(str(t), expected)
コード例 #6
0
ファイル: test_tree.py プロジェクト: stitchfix/arboreal
 def test_tree_print_just_root(self):
     t = Tree()
     expected = "<Tree 'None'>\n<Node None>"
     self.assertEqual(str(t), expected)
コード例 #7
0
def ScoreAverage(dps):
    """非树状聚合方式(即一起聚合)    计算SV方式:平均outputs在测试集上精度"""
    shapleyValue = ShapleyValue()
    tp = ThirdParty()

    db = DataBuyer(get_net())
    '''dps = []
    for i in range(params.provider_num):
        net = get_net()
        dataloader = get_data_loader(i)
        dps.append(DataProvider(net, dataloader))
    print('读取模型完成')'''

    # 随机聚合顺序
    '''order_rand = random_order(params.provider_num)
    print('聚合顺序', order_rand)
    '''

    # 构成树节点 放入tree_list
    tree_list = []

    for i in range(params.provider_num):
        tree_list.append(Tree(i, dps[i]))
    # 先在本地数据集上训练至收敛----------------

    # '''
    for i in range(params.provider_num):
        print("客户端", i, "预训练")
        for j in range(params.local_time):
            tree_list[i].provider.train()
    # '''
    # 计算SV-------------------
    print('开始计算SV')

    shapleyValue.v_way = 'score_avg'  # 计算v的方式fedavg和score_avg

    SVs = shapleyValue.cal_SV_all(tree_list)

    print("算得各个SV值:")
    for i in range(params.provider_num):
        tree_list[i].sv = SVs[i]
        print(SVs[i])

    # 找出SV>0的聚合-----------------
    positive_list = []
    for i in range(params.provider_num):
        if SVs[i] > 0:
            print(i, "SV>0并加入")
            positive_list.append(tree_list[i])

    net, acc = fedavg(positive_list, 100)

    print("聚合后精度", acc)

    # 写入txt
    txt_dir = params.dataset_division_testno + '/22.txt'
    write_txt(tree_list, 0, acc, txt_dir)
    # 把v_all写入txt
    v_all = shapleyValue.v_all
    print(v_all)
    npy_dir = params.dataset_division_testno + '/ScoreAverage_v_all_2.npy'
    write_npy_v_all(v_all, npy_dir)
コード例 #8
0
def Original(dps):
    """原本聚合方式:FedAvg   +计算SV"""
    shapleyValue = ShapleyValue()

    db = DataBuyer(get_net())
    '''dps = []
    for i in range(params.provider_num):
        net = get_net()
        dataloader = get_data_loader(i)
        dps.append(DataProvider(net, dataloader))'''

    # 构成树节点 放入tree_list
    tree_list = []
    for i in range(params.provider_num):
        tree_list.append(Tree(i, dps[i]))

    # 预训练
    # _, p_fed = fedavg(tree_list)

    num_node = len(tree_list)

    # 先在本地数据集上训练至收敛----------------

    # '''
    for i in range(params.provider_num):
        print("客户端", i, "预训练")
        for j in range(params.local_time):
            tree_list[i].provider.train()
    # '''
    #
    print('开始计算SV')

    shapleyValue.v_way = 'fedavg'  # 计算v的方式fedavg和score_avg

    SVs = shapleyValue.cal_SV_all(tree_list)

    # 所有聚合后pab
    v_all = shapleyValue.v_all

    for i in range(num_node):
        tree_list[i].sv = SVs[i]
        print(SVs[i])

    # 最后剩一个节点为根
    root = tree_list[0]
    root.B = db.B
    # 根据树分配B
    all_B(root)

    # 根节点精确度
    p_root = shapleyValue.root_p

    # SV写入txt
    txt_dir = params.dataset_division_testno + '/21.txt'
    write_txt(tree_list, 0, p_root, txt_dir)
    # 把v_all写入txt
    v_all = shapleyValue.v_all
    print(v_all)
    npy_dir = params.dataset_division_testno + '/Original_v_all_2.npy'
    write_npy_v_all(v_all, npy_dir)
    # 第三方解密,发送结果给DP、DB
    return tree_list
コード例 #9
0
def CollaborativeModelling(_tree_list=None):
    """树状聚合方式          +计算SV"""
    shapleyValue = ShapleyValue()
    tp = ThirdParty()

    db = DataBuyer(get_net())
    dps = []
    for i in range(params.provider_num):
        net = get_net()
        dataloader = get_data_loader(i)
        dps.append(DataProvider(net, dataloader))
    print('读取模型完成')

    # 随机聚合顺序
    '''order_rand = random_order(params.provider_num)
    print('聚合顺序', order_rand)
    '''

    # 构成树节点 放入tree_list
    tree_list = []

    if _tree_list is not None:
        for i in range(params.provider_num):
            tree_list.append(_tree_list[i])
    else:
        for i in range(params.provider_num):
            tree_list.append(Tree(i, dps[i]))
    """# 第三方生成密匙,传给DP、DB
    public_key, private_key = tp.generate_key()
    # DP加密model,发给DB
    for i in range(params.provider_num):
        dps[i].enctypt()
    # 聚合前先FedAvg   p_fed为fedavg的精度
    _, p_fed = fedavg(tree_list)
    """

    # 开始多次FedAvg、聚合
    last_node = tree_list[0]  # 上一次最优节点
    next_node_no = 1  # 接下来要聚合的开始节点编号

    node_K_list = [last_node]

    while next_node_no < params.provider_num:
        # print('len(node_K_list[0].children)', len(node_K_list[0].children))
        # 要聚合的K个节点
        num = 0
        while num < params.K - 1 and next_node_no < params.provider_num:
            node_K_list.append(tree_list[next_node_no])
            next_node_no += 1
            num += 1

        # K个provider聚合  可能不足K个
        num_node = len(node_K_list)
        # DB计算特征函数v,发送给第三方
        print('开始计算SV')
        SVs = shapleyValue.cal_SV_all(node_K_list)

        for i in range(num_node):
            node_K_list[i].sv = SVs[i]
            print(SVs[i])

        # 判断是否聚合
        num_aggregation = 0
        for i in range(num_node):
            if node_K_list[i].if_aggregation():
                num_aggregation += 1
        if num_aggregation == num_node:  # 全部同意聚合
            # 用聚合的模型建树
            net = shapleyValue.root_net
            # 暂时用第一个孩子的dataloader做聚合节点的dataloader
            p = DataProvider(net,
                             dataloader=get_data_loader(node_K_list[0].p_no))
            node = Tree(node_K_list[0].p_no, p)
            for i in range(num_node):
                node.children.append(node_K_list[i])
            # 记录上一次聚合的节点
            node_K_list = [node]
        else:
            # 选出SV最大的节点做根
            max_node = node_K_list[0]
            max_sv = node_K_list[0].sv
            for i in range(1, num_node):
                if node_K_list[i].sv > max_sv:
                    max_node = node_K_list[i]
                    max_sv = node_K_list[i].sv
            # 记录上一次最优的节点
            node_K_list = [max_node]

    # 最后剩一个节点为根
    root = node_K_list[0]
    root.B = db.B
    # 根据树分配B
    all_B(root)

    # 根节点精确度
    p_root = shapleyValue.root_p

    # 写入txt
    txt_dir = params.dataset_division_testno + '/10.txt'
    write_txt(tree_list, 0, p_root, txt_dir)
コード例 #10
0
    def create_unbalanced_tree():
        """Tree: {None: 1}{1: 2}{1: 3}{3: 6}{3: 7}{6: 8}"""
        tree = Tree()
        log.debug(tree.get_root())

        tree.insert(Node(4, parent_name=None))
        tree.insert(Node(2, parent_name=4))
        tree.insert(Node(6, parent_name=4))
        tree.insert(Node(1, parent_name=2))
        tree.insert(Node(5, parent_name=6))
        tree.insert(Node(7, parent_name=6))
        tree.insert(Node(8, parent_name=7))
        tree.insert(Node(9, parent_name=8))
        return tree