コード例 #1
0
    def _LMLgrad_lik(self,hyperparams):
        """
        evaluates the gradient of the log marginal likelihood with respect to
        the hyperparameters of the likelihood function
        """
        try:
            KV = self.get_covariances(hyperparams)
        except LA.LinAlgError:
            LG.error('linalg exception in _LML_covar')
            return {'lik':SP.zeros(len(hyperparams['lik']))}
        except ValueError:
            LG.error('value error in _LML_covar')
            return {'lik':SP.zeros(len(hyperparams['lik']))}
        
        YtildeVec = ravel(KV['Ytilde'])
        Kd_diag = self.likelihood.Kdiag_grad_theta(hyperparams['lik'],self.n,0)

        temp = SP.kron(SP.dot(KV['U_c'].T, SP.dot(KV['Binv'], SP.dot(KV['Binv'].T, KV['U_c']))),SP.diag(Kd_diag)) 
        LMLgrad_det = SP.diag(SP.dot(SP.diag(1./KV['S']),temp)).sum() # Needs more optimization
        
        sigma_grad = 2 * SP.exp(2 * hyperparams['lik'])
        LMLgrad_quad = - (sigma_grad * YtildeVec * 
            ravel(SP.dot(SP.eye(self.n), SP.dot(KV['Ytilde'],KV['UBinvBinvU'].T)))).sum()
        LMLgrad = 0.5*(LMLgrad_det + LMLgrad_quad)
        
        return {'lik':SP.array([LMLgrad])}
コード例 #2
0
    def _LMLgrad_lik(self,hyperparams,debugging=False):
        """
        evaluates the gradient of the log marginal likelihood with respect to
        the hyperparameters of the likelihood function
        """
        try:
            KV = self.get_covariances(hyperparams,debugging=debugging)
        except LA.LinAlgError:
            LG.error('linalg exception in _LML_covar')
            return {'lik':SP.zeros(len(hyperparams['lik']))}
        except ValueError:
            LG.error('value error in _LML_covar')
            return {'lik':SP.zeros(len(hyperparams['lik']))}
        
        YtildeVec = ravel(KV['Ytilde'])
        Kd_diag = self.likelihood.Kdiag_grad_theta(hyperparams['lik'],self.nt,0)

        LMLgrad_det = ((1./KV['S'])*Kd_diag).sum()
        LMLgrad_quad = -(YtildeVec**2 * Kd_diag).sum()
        LMLgrad = 0.5*(LMLgrad_det + LMLgrad_quad)
        
        if debugging:
            W = KV['W']
            Kd = self.likelihood.Kgrad_theta(hyperparams['lik'],self.nt,0)
            _LMLgrad = 0.5 * (W*Kd).sum()
            assert SP.allclose(LMLgrad,_LMLgrad), 'ouch, gradient is wrong for likelihood param'

        return {'lik':SP.array([LMLgrad])}
コード例 #3
0
    def get_covariances(self,hyperparams):
        """
        INPUT:
        hyperparams:  dictionary
        OUTPUT: dictionary with the fields
        Kr:     kernel on rows
        Kc:     kernel on columns
        Knoise: noise kernel
        """
        if self._is_cached(hyperparams):
            return self._covar_cache
        if self._covar_cache==None:
            self._covar_cache = {}
            
        if not(self._is_cached(hyperparams,keys=['covar_c'])):
            K_c = self.covar_c.K(hyperparams['covar_c'])
            S_c,U_c = LA.eigh(K_c)
            self._covar_cache['K_c'] = K_c
            self._covar_cache['U_c'] = U_c
            self._covar_cache['S_c'] = S_c
        else:
            K_c = self._covar_cache['K_c']
            U_c = self._covar_cache['U_c']
            S_c = self._covar_cache['S_c']
            
        if not(self._is_cached(hyperparams,keys=['covar_r'])):
            K_r = self.covar_r.K(hyperparams['covar_r'])
            S_r,U_r = LA.eigh(K_r)
            self._covar_cache['K_r'] = K_r
            self._covar_cache['U_r'] = U_r
            self._covar_cache['S_r'] = S_r
        else:
            K_r = self._covar_cache['K_r']
            U_r = self._covar_cache['U_r']
            S_r = self._covar_cache['S_r']

        Binv = SP.linalg.pinv(self.basis)       
        S = SP.kron(S_c,S_r) + self.likelihood.Kdiag(hyperparams['lik'],self.nt)
        #UYUB = SP.dot(U_r.T, SP.dot(self.Y, SP.dot(Binv.T, SP.dot(U_c, SP.dot(U_c.T, Binv)))))
        UYUB = SP.dot(U_r.T, SP.dot(self.Y, SP.dot(Binv.T, U_c)))
        YtildeVec = (1./S) * ravel(UYUB)
        self._covar_cache['Binv'] = Binv
        self._covar_cache['S'] = S
        self._covar_cache['UYUB'] = UYUB
        self._covar_cache['Ytilde'] = unravel(YtildeVec,self.n,self.t)
        UBinv = SP.dot(U_c.T, Binv)
        self._covar_cache['UBinvB'] = SP.dot(UBinv, self.basis)
        self._covar_cache['UBinvBinvU'] = SP.dot(UBinv, UBinv.T)
        self._covar_cache['S_c_tilde'] = SP.diag(SP.dot(self._covar_cache['UBinvB'],SP.dot(K_c, self._covar_cache['UBinvB'].T)))
        self._covar_cache['hyperparams'] = copy.deepcopy(hyperparams)
        return self._covar_cache
コード例 #4
0
    def get_covariances(self, hyperparams):

        if self._is_cached(hyperparams):
            return self._covar_cache
        if self._covar_cache == None:
            self._covar_cache = {}

        if not (self._is_cached(hyperparams, keys=['covar_c'])):
            K_c = self.covar_c.K(hyperparams['covar_c'])
            S_c, U_c = LA.eigh(K_c)
            self._covar_cache['K_c'] = K_c
            self._covar_cache['U_c'] = U_c
            self._covar_cache['S_c'] = S_c
        else:
            K_c = self._covar_cache['K_c']
            U_c = self._covar_cache['U_c']
            S_c = self._covar_cache['S_c']

        if not (self._is_cached(hyperparams, keys=['covar_r'])):
            K_r = self.covar_r.K(hyperparams['covar_r'])
            S_r, U_r = LA.eigh(K_r)
            self._covar_cache['K_r'] = K_r
            self._covar_cache['U_r'] = U_r
            self._covar_cache['S_r'] = S_r
        else:
            K_r = self._covar_cache['K_r']
            U_r = self._covar_cache['U_r']
            S_r = self._covar_cache['S_r']

        Binv = SP.linalg.pinv(self.basis.T).T
        S = SP.kron(S_c, S_r) + self.likelihood.Kdiag(hyperparams['lik'],
                                                      self.nt)
        UYUB = reduce(SP.dot, [U_r.T, self.Y, Binv.T, U_c])
        YtildeVec = (1. / S) * ravel(UYUB)
        self._covar_cache['Binv'] = Binv
        self._covar_cache['S'] = S
        self._covar_cache['UYUB'] = UYUB
        self._covar_cache['Ytilde'] = unravel(YtildeVec, self.n, self.t)
        UBinv = SP.dot(U_c.T, Binv)
        self._covar_cache['UBinvB'] = SP.dot(UBinv, self.basis)
        self._covar_cache['UBinvBinvU'] = SP.dot(UBinv, UBinv.T)
        self._covar_cache['S_c_tilde'] = SP.diag(
            reduce(SP.dot, [
                self._covar_cache['UBinvB'], K_c, self._covar_cache['UBinvB'].T
            ]))
        self._covar_cache['hyperparams'] = copy.deepcopy(hyperparams)
        return self._covar_cache
コード例 #5
0
ファイル: gp_sMTGPTR.py プロジェクト: smkia/MTNorm
    def _LMLgrad_s(self, hyperparams):
        """
        evaluate gradients with respect to covariance matrix Sigma
        """
        try:
            KV = self.get_covariances(hyperparams)
        except LA.LinAlgError:
            LG.error('linalg exception in _LMLgrad_x_sigma')
            return {'X_s': SP.zeros(hyperparams['X_s'].shape)}

        Si = 1. / KV['Stilde_os']
        Yhat = unravel(Si * ravel(KV['UYtildeU_os']), self.n, SP.prod(self.bn))
        RV = {}

        if 'covar_s' in hyperparams:
            k = 0
            RV['covar_s'] = []
            for covar in self.covar_s:
                theta = SP.zeros(len(hyperparams['covar_s'][k]))
                #USU = SP.dot(KV['USi_c'][k].T,KV['Utilde_s'][k])

                USU = SP.dot(
                    self.nbasis[k].T,
                    SP.dot(self.basis[k],
                           SP.dot(KV['USi_c'][k].T, KV['Utilde_s'][k])))

                for i in range(len(theta)):
                    Kgrad_s = covar.Kgrad_theta(hyperparams['covar_s'][k], i)
                    UdKU = SP.dot(USU.T, SP.dot(Kgrad_s, USU))
                    temp = copy.deepcopy(KV['Stilde_s'])
                    for z in range(len(temp)):
                        temp[z] = SP.diag(temp[z])
                    temp[k] = UdKU
                    SUdKUS = reduce(SP.kron, temp[::-1])
                    LMLgrad_det = SP.sum(Si * SP.kron(
                        SP.diag(SUdKUS), reduce(SP.kron, KV['Stilde_o'])))
                    SYUdKU = SP.dot(SUdKUS,
                                    reduce(SP.kron, KV['Stilde_o']) * Yhat.T)
                    LMLgrad_quad = -(Yhat.T * SYUdKU).sum()
                    LMLgrad = 0.5 * (LMLgrad_det + LMLgrad_quad)
                    theta[i] = LMLgrad
                RV['covar_s'].append(theta)
                k += 1

        return RV
コード例 #6
0
    def _LMLgrad_lik(self, hyperparams):
        """
        evaluates the gradient of the log marginal likelihood with respect to
        the hyperparameters of the likelihood function
        """
        try:
            KV = self.get_covariances(hyperparams)
        except LA.LinAlgError:
            LG.error('linalg exception in _LML_covar')
            return {'lik': SP.zeros(len(hyperparams['lik']))}
        except ValueError:
            LG.error('value error in _LML_covar')
            return {'lik': SP.zeros(len(hyperparams['lik']))}

        YtildeVec = ravel(KV['Ytilde'])
        Kd_diag = self.likelihood.Kdiag_grad_theta(hyperparams['lik'], self.nt,
                                                   0)
        LMLgrad_det = ((1. / KV['S']) * Kd_diag).sum()
        LMLgrad_quad = -(YtildeVec**2 * Kd_diag).sum()
        LMLgrad = 0.5 * (LMLgrad_det + LMLgrad_quad)
        return {'lik': SP.array([LMLgrad])}
コード例 #7
0
ファイル: gp_sMTGPTR.py プロジェクト: smkia/MTNorm
    def _LML_covar(self, hyperparams):
        """
        log marginal likelihood
        """
        #self._update_inputs(hyperparams)

        try:
            KV = self.get_covariances(hyperparams)
        except LA.LinAlgError:
            pdb.set_trace()
            LG.error('linalg exception in _LML_covar')
            return 1E6

        Si = 1. / KV['Stilde_rc']
        lml_quad = 0.5 * (ravel(KV['UYtildeU_rc'])**2 * Si).sum()
        lml_det = 0.5 * (
            SP.log(reduce(SP.kron, KV['S_s'][::-1])).sum() * self.n +
            SP.log(reduce(SP.kron, KV['S_o'])).sum() * SP.prod(self.t))
        lml_det += 0.5 * SP.log(KV['Stilde_rc']).sum()
        lml_const = 0.5 * self.nt * (SP.log(2 * SP.pi))

        lml = lml_quad + lml_det + lml_const

        return lml
コード例 #8
0
    def get_covariances(self,hyperparams,debugging=False):
        """
        INPUT:
        hyperparams:  dictionary
        OUTPUT: dictionary with the fields
        Kr:     kernel on rows
        Kc:     kernel on columns
        Knoise: noise kernel
        """
        if self._is_cached(hyperparams):
            return self._covar_cache
        if self._covar_cache==None:
            self._covar_cache = {}
            
        if not(self._is_cached(hyperparams,keys=['covar_c'])):
            K_c = self.covar_c.K(hyperparams['covar_c'])
            S_c,U_c = LA.eigh(K_c)
            self._covar_cache['K_c'] = K_c
            self._covar_cache['U_c'] = U_c
            self._covar_cache['S_c'] = S_c
        else:
            K_c = self._covar_cache['K_c']
            U_c = self._covar_cache['U_c']
            S_c = self._covar_cache['S_c']
            
        if not(self._is_cached(hyperparams,keys=['covar_r'])):
            K_r = self.covar_r.K(hyperparams['covar_r'])
            S_r,U_r = LA.eigh(K_r)
            self._covar_cache['K_r'] = K_r
            self._covar_cache['U_r'] = U_r
            self._covar_cache['S_r'] = S_r
        else:
            K_r = self._covar_cache['K_r']
            U_r = self._covar_cache['U_r']
            S_r = self._covar_cache['S_r']

        S = SP.kron(S_c,S_r) + self.likelihood.Kdiag(hyperparams['lik'],self.nt)
        UYU = SP.dot(U_r.T,SP.dot(self.Y,U_c))
        YtildeVec = (1./S)*ravel(UYU)
        self._covar_cache['S'] = S
        self._covar_cache['UYU'] = UYU
        self._covar_cache['Ytilde'] = unravel(YtildeVec,self.n,self.t)

        
        if debugging:
            # test ravel operations
            UYUvec = ravel(UYU)
            UYU2 = unravel(UYUvec,self.n,self.t)
            SP.allclose(UYU2,UYU)

            # needed later
            Yvec = ravel(self.Y)
            K_noise = self.likelihood.K(hyperparams['lik'],self.nt) # only works for iid noise
            K = SP.kron(K_c,K_r) + K_noise
            #L = LA.cholesky(K).T
            L = jitChol(K)[0].T # lower triangular
            alpha = LA.cho_solve((L,True),Yvec)
            alpha2D = SP.reshape(alpha,(self.nt,1))
            Kinv = LA.cho_solve((L,True),SP.eye(self.nt))
            W = Kinv - SP.dot(alpha2D,alpha2D.T)
            self._covar_cache['Yvec'] = Yvec
            self._covar_cache['K'] = K
            self._covar_cache['Kinv'] = Kinv
            self._covar_cache['L'] = L
            self._covar_cache['alpha'] = alpha
            self._covar_cache['W'] = W

        self._covar_cache['hyperparams'] = copy.deepcopy(hyperparams)
        return self._covar_cache
コード例 #9
0
ファイル: gp_sMTGPTR.py プロジェクト: smkia/MTNorm
    def predict(self, hyperparams, Xstar_r, compute_cov=False):
        """
        predicting
        """
        KV = self.get_covariances(hyperparams)

        self.covar_r[0].Xcross = Xstar_r
        Kstar_r = self.covar_r[0].Kcross(hyperparams['covar_r'][0])
        USUr = SP.dot(
            SP.sqrt(1. / KV['S_o'][0]) * KV['U_o'][0], KV['Utilde_r'][0])
        S = KV['Stilde_rc']
        RUSUrYhat = SP.dot(
            Kstar_r.T,
            SP.dot(
                USUr,
                unravel(
                    ravel(KV['UYtildeU_rc']) * 1. / S, self.n,
                    SP.prod(self.nbn))))
        usuc = list()
        for i in range(self.out_dims):
            usuc.append(
                SP.dot(
                    self.basis[i],
                    SP.dot(
                        KV['K_c'][i],
                        SP.dot(
                            self.basis[i].T,
                            SP.dot(self.nbasis[i],
                                   SP.dot(KV['USi_s'][i].T,
                                          KV['Utilde_c'][i]))))).T)
        if SP.prod(self.t) <= 10000:
            USUC = reduce(SP.kron, usuc[::-1])
            Ystar = SP.dot(RUSUrYhat, USUC)
        else:
            Ystar = SP.zeros([Xstar_r.shape[0], SP.prod(self.t)])
            if self.out_dims == 1:
                for j in range(self.t[0]):
                    USUC = usuc[0][:, j]
                    Ystar[:, j] = SP.dot(RUSUrYhat, USUC)
            elif self.out_dims == 2:
                for j in range(self.t[0]):
                    for k in range(self.t[1]):
                        USUC = reduce(SP.kron, [usuc[1][:, k], usuc[0][:, j]])
                        Ystar[:, k + j * self.t[1]] = SP.dot(RUSUrYhat, USUC)
            elif self.out_dims == 3:
                for j in range(self.t[0]):
                    for k in range(self.t[1]):
                        for l in range(self.t[2]):
                            USUC = reduce(
                                SP.kron,
                                [usuc[2][:, l], usuc[1][:, k], usuc[0][:, j]])
                            Ystar[:, l + k * self.t[2] + j *
                                  (self.t[1] * self.t[2])] = SP.dot(
                                      RUSUrYhat, USUC)
        Ystar_covar = []
        if compute_cov:
            if self.nt < 10000:
                B = reduce(SP.kron, self.basis[::-1])
                C = SP.dot(B, SP.dot(reduce(SP.kron, KV['K_c'][::-1]), B.T))
                USUC = reduce(SP.kron, usuc[::-1])
                R_star_star = self.covar_r[0].K(hyperparams['covar_r'][0],
                                                Xstar_r)
                temp = SP.kron(USUC.T, SP.dot(Kstar_r.T, USUr))
                Ystar_covar = SP.kron(SP.diag(C),
                                      SP.diag(R_star_star)) - SP.sum(
                                          (1. / S * temp).T * temp.T, axis=0)
                Ystar_covar = unravel(Ystar_covar, Xstar_r.shape[0],
                                      SP.prod(self.t))
            elif SP.prod(self.t) < 10000:
                Ystar_covar = SP.zeros([Xstar_r.shape[0], SP.prod(self.t)])
                B = reduce(SP.kron, self.basis[::-1])
                C = SP.dot(B, SP.dot(reduce(SP.kron, KV['K_c'][::-1]), B.T))
                USUC = reduce(SP.kron, usuc[::-1])
                printProgressBar(0,
                                 Xstar_r.shape[0],
                                 prefix='Computing perdiction varaince:',
                                 suffix='Complete',
                                 length=20)
                for i in range(Xstar_r.shape[0]):
                    R_star_star = self.covar_r[0].K(
                        hyperparams['covar_r'][0],
                        SP.expand_dims(Xstar_r[i, :], axis=0))
                    self.covar_r[0].Xcross = SP.expand_dims(Xstar_r[i, :],
                                                            axis=0)
                    R_tr_star = self.covar_r[0].Kcross(
                        hyperparams['covar_r'][0])
                    r = SP.dot(R_tr_star.T, USUr)
                    q = SP.diag(SP.kron(C, R_star_star))
                    t = SP.zeros([SP.prod(self.t)])
                    for j in range(SP.prod(self.t)):
                        temp = SP.kron(USUC[:, j], r)
                        t[j, ] = SP.sum((1. / S * temp).T * temp.T, axis=0)
                    Ystar_covar[i, :] = q - t
                    if (i + 1) % 50 == 0:
                        printProgressBar(
                            i + 1,
                            Xstar_r.shape[0],
                            prefix='Computing perdiction varaince:',
                            suffix='Complete',
                            length=20)
                self.covar_r[0].Xcross = Xstar_r
            elif Xstar_r.shape[0] < 2000:
                Ystar_covar = SP.zeros([Xstar_r.shape[0], SP.prod(self.t)])
                c_diag = list()
                for j in range(self.out_dims):
                    temp = SP.dot(self.basis[j],
                                  SP.dot(KV['K_c'][j], self.basis[j].T))
                    c_diag.append(SP.diag(temp))
                C = reduce(SP.kron, c_diag[::-1])
                R_star_star = self.covar_r[0].K(hyperparams['covar_r'][0],
                                                Xstar_r)
                R_tr_star = self.covar_r[0].Kcross(hyperparams['covar_r'][0])
                r = SP.dot(R_tr_star.T, USUr)
                #q = SP.reshape(SP.kron(SP.diag(R_star_star),C),[Ystar_covar.shape[0],Ystar_covar.shape[1]])
                q = unravel(SP.kron(C, SP.diag(R_star_star)),
                            Ystar_covar.shape[0], Ystar_covar.shape[1])
                t = SP.zeros(Ystar_covar.shape)
                printProgressBar(0,
                                 Xstar_r.shape[0],
                                 prefix='Computing perdiction varaince:',
                                 suffix='Complete',
                                 length=20)
                if self.out_dims == 1:
                    for j in range(self.t[0]):
                        USUC = usuc[0][:, j]
                        temp = SP.kron(USUC, r)
                        t[j, ] = SP.sum((1. / S * temp).T * temp.T, axis=0)
                        printProgressBar(
                            j + 1,
                            self.t[0],
                            prefix='Computing perdiction varaince:',
                            suffix='Complete',
                            length=20)
                elif self.out_dims == 2:
                    for j in range(self.t[0]):
                        for k in range(self.t[1]):
                            USUC = reduce(SP.kron,
                                          [usuc[1][:, k], usuc[0][:, j]])
                            temp = SP.kron(USUC, r)
                            t[k + (j * self.t[1]), ] = SP.sum(
                                (1. / S * temp).T * temp.T, axis=0)
                        printProgressBar(
                            j + 1,
                            self.t[0],
                            prefix='Computing perdiction varaince:',
                            suffix='Complete',
                            length=20)
                elif self.out_dims == 3:
                    for j in range(self.t[0]):
                        for k in range(self.t[1]):
                            for l in range(self.t[2]):
                                USUC = reduce(SP.kron, [
                                    usuc[2][:, l], usuc[1][:, k], usuc[0][:, j]
                                ])
                                temp = SP.kron(USUC, r)
                                t[:, l + k * self.t[2] +
                                  j * self.t[1] * self.t[2], ] = SP.sum(
                                      (1. / S * temp).T * temp.T, axis=0)
                        if (j + 1) % 5 == 0:
                            printProgressBar(
                                j + 1,
                                self.t[0],
                                prefix='Computing perdiction varaince:',
                                suffix='Complete',
                                length=20)
                Ystar_covar = q - t
            else:
                Ystar_covar = SP.zeros([Xstar_r.shape[0], SP.prod(self.t)])
                c_diag = list()
                for j in range(self.out_dims):
                    temp = SP.dot(self.basis[j],
                                  SP.dot(KV['K_c'][j], self.basis[j].T))
                    c_diag.append(SP.diag(temp))
                C = reduce(SP.kron, c_diag[::-1])
                printProgressBar(0,
                                 Xstar_r.shape[0],
                                 prefix='Computing perdiction varaince:',
                                 suffix='Complete',
                                 length=20)
                for i in range(Xstar_r.shape[0]):
                    R_star_star = self.covar_r[0].K(
                        hyperparams['covar_r'][0],
                        SP.expand_dims(Xstar_r[i, :], axis=0))
                    self.covar_r[0].Xcross = SP.expand_dims(Xstar_r[i, :],
                                                            axis=0)
                    R_tr_star = self.covar_r[0].Kcross(
                        hyperparams['covar_r'][0])
                    r = SP.dot(R_tr_star.T, USUr)
                    q = C * R_star_star
                    t = SP.zeros([SP.prod(self.t)])
                    if self.out_dims == 1:
                        for j in range(self.t[0]):
                            USUC = usuc[0][:, j]
                            temp = SP.kron(USUC, r)
                            t[j, ] = SP.sum((1. / S * temp).T * temp.T, axis=0)
                    elif self.out_dims == 2:
                        for j in range(self.t[0]):
                            for k in range(self.t[1]):
                                USUC = reduce(SP.kron,
                                              [usuc[1][:, k], usuc[0][:, j]])
                                temp = SP.kron(USUC, r)
                                t[k + (j * self.t[1]), ] = SP.sum(
                                    (1. / S * temp).T * temp.T, axis=0)
                    elif self.out_dims == 3:
                        for j in range(self.t[0]):
                            for k in range(self.t[1]):
                                for l in range(self.t[2]):
                                    USUC = reduce(SP.kron, [
                                        usuc[2][:, l], usuc[1][:, k],
                                        usuc[0][:, j]
                                    ])
                                    temp = SP.kron(USUC, r)
                                    t[l + k * self.t[2] +
                                      j * self.t[1] * self.t[2], ] = SP.sum(
                                          (1. / S * temp).T * temp.T, axis=0)
                    Ystar_covar[i, :] = q - t
                    if (i + 1) % 10 == 0:
                        printProgressBar(
                            i + 1,
                            Xstar_r.shape[0],
                            prefix='Computing perdiction varaince:',
                            suffix='Complete',
                            length=20)
                self.covar_r[0].Xcross = Xstar_r

        return Ystar, Ystar_covar