def __init__(self, height, width, net=None, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ignore_threshold=0.5, dynamic=True, from_sigmoid=False, augmentation=False, make_target=False): self._height = height self._width = width self._mean = mean self._std = std self._augmentation = augmentation self._make_target = make_target if self._make_target: self._output1, self._output2, self._output3, self._anchor1, self._anchor2, self._anchor3, _, _, _, _, _, _ = net( mx.nd.zeros((1, 3, height, width))) self._target_generator = TargetGenerator( ignore_threshold=ignore_threshold, dynamic=dynamic, from_sigmoid=from_sigmoid) else: self._target_generator = None
def __init__(self, height, width, net=None, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], foreground_iou_thresh=0.5, background_iou_thresh=0.4, augmentation=False, make_target=True): self._height = height self._width = width self._mean = mean self._std = std self._augmentation = augmentation self._foreground_iou_thresh = foreground_iou_thresh self._background_iou_thresh = background_iou_thresh self._make_target = make_target if self._make_target: _, _, self._anchor = net(mx.nd.zeros((1, 3, height, width))) self._target_generator = TargetGenerator( foreground_iou_thresh=foreground_iou_thresh, background_iou_thresh=background_iou_thresh) else: self._target_generator = None
def __init__(self, input_size, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], scale_factor=4, make_target=False, num_classes=3): self._width = input_size[1] self._height = input_size[0] self._mean = mean self._std = std self._scale_factor = scale_factor self._make_target = make_target if self._make_target: self._target_generator = TargetGenerator(num_classes=num_classes) else: self._target_generator = None
def __init__(self, input_size, input_frame_number=1, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], scale_factor=4, make_target=False, num_classes=3): self._width = input_size[1] self._height = input_size[0] self._mean = torch.as_tensor(mean*input_frame_number).reshape((3*input_frame_number, 1, 1)) self._std = torch.as_tensor(std*input_frame_number).reshape((3*input_frame_number, 1, 1)) self._toTensor = torchvision.transforms.ToTensor() self._scale_factor = scale_factor self._make_target = make_target if self._make_target: self._target_generator = TargetGenerator(num_classes=num_classes) else: self._target_generator = None