コード例 #1
0
        prec_meter.update(prec)
        if (step+1) % cfg.steps_per_log == 0 or (step+1)%len(train_loader) == 0:
            log = '\tStep {}/{} in Ep {}, {:.2f}s, loss{:.4f}, prec{:.4f}'.format(
                step+1, dataset_L, epoch+1, time.time()-step_st, loss_meter.val, prec_meter.val)
            print(log)

    ##############
    # epoch log  #
    ##############
    log = 'Ep{}, {:.2f}s, loss {:.4f}, prec {:.4f}'.format(
        epoch+1, time.time() - ep_st, loss_meter.avg, prec_meter.avg)
    print(log)

    # model ckpt
    if (epoch + 1) % cfg.epochs_per_save == 0:
        ckpt_file = os.path.join(cfg.exp_dir, 'model', 'ckpt_epoch%d.pth'%(epoch+1))
        save_ckpt(modules_optims, epoch+1, 0, ckpt_file)

    ##########################
    # test on validation set #
    ##########################
    if (epoch + 1) % cfg.epochs_per_val == 0:
        result = reid_evaluate(feat_func, test_set, **cfg.test_kwargs)
        print('-' * 60)
        print('Evaluation on %s set:' % (cfg.test_split))
        for evaluation in result.keys():
            print('%s:' % (evaluation))
            print("mAP: %.4f, Rank1: %.4f, Rank5: %.4f, Rank10: %.4f" % (result[evaluation]['mAP'], result[evaluation]['CMC'][0, 0],\
                result[evaluation]['CMC'][0, 4], result[evaluation]['CMC'][0, 9]))
        print('-' * 60)
コード例 #2
0
        if (step+1) % cfg.steps_per_log == 0 or (step+1)%len(train_loader) == 0:
            log = '\tStep {}/{} in Ep {}, {:.2f}s, loss{:.4f}'.format(
                step+1, dataset_L, epoch+1, time.time()-step_st, loss_meter.val)
            print(log)

    ##############
    # epoch log  #
    ##############
    log = 'Ep{}, {:.2f}s, loss {:.4f}'.format(
        epoch+1, time.time() - ep_st, loss_meter.avg)
    print(log)

    # model ckpt
    if (epoch + 1) % cfg.epochs_per_save == 0:
        ckpt_file = os.path.join(cfg.exp_dir, 'model', 'ckpt_epoch%d.pth'%(epoch+1))
        save_ckpt(modules_optims, epoch+1, 0, ckpt_file)

    ##########################
    # test on validation set #
    ##########################
    if (epoch + 1) % cfg.epochs_per_val == 0:
        result = reid_evaluate(feat_func, test_set, **cfg.test_kwargs)
        print('-' * 60)
        print('Evaluation on %s set:' % (cfg.test_split))
        for evaluation in result.keys():
            print('%s:' % (evaluation))
            print("mAP: %.4f, Rank1: %.4f, Rank5: %.4f, Rank10: %.4f" % (result[evaluation]['mAP'], result[evaluation]['CMC'][0, 0],\
                result[evaluation]['CMC'][0, 4], result[evaluation]['CMC'][0, 9]))
        print('-' * 60)
        
    # log to TensorBoard