from PIL import Image num_classes = 80 input_size = 416 graph = tf.Graph() image_path = "./docs/road.jpeg" original_image = cv2.imread(image_path) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...] image_data = image_data.astype(np.float32) input_data = tf.keras.layers.Input([416, 416, 3]) model = yolov3.YOLOV3(input_data).model utils.load_weights(model, "./yolov3.weights") pred_sbbox, pred_mbbox, pred_lbbox = model(image_data) pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)), np.reshape(pred_mbbox, (-1, 5 + num_classes)), np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3) bboxes = utils.nms(bboxes, 0.45, method='nms') image = utils.draw_bbox(original_image, bboxes) image = Image.fromarray(image) image.show()
import core.yolov3 as yolov3 from PIL import Image num_classes = 80 input_size = 416 graph = tf.Graph() image_path = "./docs/kite.jpg" original_image = cv2.imread(image_path) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) input_layer = tf.keras.layers.Input([input_size, input_size, 3]) model = yolov3.YOLOV3(input_layer) model.load_weights("./yolov3.weights") # model = model.model # model.load_weights("./yolov3") # pred_sbbox, pred_mbbox, pred_lbbox = model(image_data) pred_sbbox, pred_mbbox, pred_lbbox = model.inference(image_data) pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)), np.reshape(pred_mbbox, (-1, 5 + num_classes)), np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3) bboxes = utils.nms(bboxes, 0.45, method='nms') image = utils.draw_bbox(original_image, bboxes) image = Image.fromarray(image) image.show()