コード例 #1
0
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from datetime import datetime
import pandas as pd

import sys
from core import FeedbackAnalysis as FA

from importlib import reload
reload(FA)

df = FA.FeedbackAnalysis(uptake=('TRENDY', 'LPJ-GUESS_S1_nbp'),
                         temp='CRUTEM',
                         time='year',
                         sink="Earth_Land",
                         time_range=slice("2008", "2017"))
df.data

df.U
len(df.uptake), len(df.temp), len(df.CO2)

df.data
df.model.summary()

df.data

df.model.params
df.confidence_intervals('const', alpha)
df.model.summary()
コード例 #2
0
        time_ranges.pop(-1)
        time_ranges.append((str(time_stop - 10), str(time_stop)))

    return time_ranges


""" EXECUTION """
for input in tqdm(inputs):
    uptake, tempsink, time = input
    temp, sink = tempsink

    time_start, time_stop = timerange_inputs[uptake[0]][uptake[1]]
    time_start = int(time_start)
    time_stop = int(time_stop)
    time_ranges = build_time_ranges(time_start, time_stop)
    # [str(max(1959, time_start)), '2017']

    for time_range in time_ranges:
        if time == "month":
            # Grab last month of previous year as end point.
            month_tr = str(int(time_range[1]) - 1)
            time_range = (f'{time_range[0]}-01', f'{month_tr}-12')
        slice_time_range = slice(*time_range)

        df = FA.FeedbackAnalysis(uptake=uptake,
                                 temp=temp,
                                 time=time,
                                 sink=sink,
                                 time_range=slice_time_range)
        df.feedback_output()