import os import sys import traceback from cores import Options, core from util import util from models import loadmodel opt = Options().getparse() util.file_init(opt) def main(): if os.path.isdir(opt.media_path): files = util.Traversal(opt.media_path) else: files = [opt.media_path] if opt.mode == 'add': netS = loadmodel.bisenet(opt, 'roi') for file in files: opt.media_path = file if util.is_img(file): core.addmosaic_img(opt, netS) elif util.is_video(file): core.addmosaic_video(opt, netS) else: print('This type of file is not supported') elif opt.mode == 'clean': netM = loadmodel.bisenet(opt, 'mosaic') if opt.traditional:
import os import sys import traceback from cores import Options,core from util import util from models import loadmodel opt = Options().getparse(test_flag = True) util.file_init(opt) def main(): if os.path.isdir(opt.media_path): files = util.Traversal(opt.media_path) else: files = [opt.media_path] if opt.mode == 'add': netS = loadmodel.bisenet(opt,'roi') for file in files: opt.media_path = file if util.is_img(file): core.addmosaic_img(opt,netS) elif util.is_video(file): core.addmosaic_video(opt,netS) else: print('This type of file is not supported') elif opt.mode == 'clean': netM = loadmodel.bisenet(opt,'mosaic') if opt.traditional: netG = None
import sys import traceback sys.path.append("..") from util import mosaic import torch try: from cores import Options,add,clean,style from util import util from models import loadmodel except Exception as e: print(e) input('Please press any key to exit.\n') sys.exit(0) opt = Options().getparse(test_flag = False) if not os.path.isdir(opt.temp_dir): util.file_init(opt) def saveScriptModel(model,example,savepath): model.cpu() traced_script_module = torch.jit.trace(model, example) # try ScriptModel output = traced_script_module(example) print(output) traced_script_module.save(savepath) savedir = '../cpp/res/models/' util.makedirs(savedir) opt.mosaic_position_model_path = '../pretrained_models/mosaic/mosaic_position.pth'
import sys sys.path.append("..") sys.path.append("../..") from util import mosaic,util,ffmpeg,filt,data from util import image_processing as impro from cores import Options from models import pix2pix_model,pix2pixHD_model,video_model,unet_model,loadmodel,videoHD_model from matplotlib import pyplot as plt import torch.backends.cudnn as cudnn ''' --------------------------Get options-------------------------- ''' opt = Options() opt.parser.add_argument('--N',type=int,default=25, help='') opt.parser.add_argument('--lr',type=float,default=0.0002, help='') opt.parser.add_argument('--beta1',type=float,default=0.5, help='') opt.parser.add_argument('--gan', action='store_true', help='if specified, use gan') opt.parser.add_argument('--l2', action='store_true', help='if specified, use L2 loss') opt.parser.add_argument('--hd', action='store_true', help='if specified, use HD model') opt.parser.add_argument('--lambda_L1',type=float,default=100, help='') opt.parser.add_argument('--lambda_gan',type=float,default=1, help='') opt.parser.add_argument('--finesize',type=int,default=256, help='') opt.parser.add_argument('--loadsize',type=int,default=286, help='') opt.parser.add_argument('--batchsize',type=int,default=1, help='') opt.parser.add_argument('--perload_num',type=int,default=16, help='') opt.parser.add_argument('--norm',type=str,default='instance', help='') opt.parser.add_argument('--maxiter',type=int,default=10000000, help='')
import os import sys sys.path.append("..") from cores import Options opt = Options() import random import datetime import time import numpy as np import cv2 import torch from models import runmodel, loadmodel import util.image_processing as impro from util import filt, util, mosaic, data, ffmpeg opt.parser.add_argument('--datadir', type=str, default='your video dir', help='') opt.parser.add_argument('--savedir', type=str, default='../datasets/video/face', help='') opt.parser.add_argument('--interval', type=int, default=30, help='interval of split video ') opt.parser.add_argument('--time', type=int, default=5, help='split video time')
from models import pix2pix_model from matplotlib import pyplot as plt import torch.backends.cudnn as cudnn N = 25 ITER = 1000000 LR = 0.0002 use_gpu = True CONTINUE = True # BATCHSIZE = 4 dir_checkpoint = 'checkpoints/' SAVE_FRE = 5000 start_iter = 0 SIZE = 256 lambda_L1 = 100.0 opt = Options().getparse() opt.use_gpu = True videos = os.listdir('./dataset') videos.sort() lengths = [] for video in videos: video_images = os.listdir('./dataset/' + video + '/ori') lengths.append(len(video_images)) netG = pix2pix_model.define_G(3 * N + 1, 3, 128, 'resnet_9blocks', norm='instance', use_dropout=True, init_type='normal',
import os import sys sys.path.append("..") sys.path.append("../..") from cores import Options opt = Options() import numpy as np import cv2 import random import torch import torch.nn as nn import time from multiprocessing import Process, Queue from util import mosaic, util, ffmpeg, filt, data from util import image_processing as impro from models import pix2pix_model, pix2pixHD_model, video_model, unet_model, loadmodel, videoHD_model import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import torch.backends.cudnn as cudnn ''' --------------------------Get options-------------------------- ''' opt.parser.add_argument('--N', type=int, default=25, help='') opt.parser.add_argument('--lr', type=float, default=0.0002, help='') opt.parser.add_argument('--beta1', type=float, default=0.5, help='') opt.parser.add_argument('--gan', action='store_true', help='if specified, use gan')
import torch.backends.cudnn as cudnn import torch.nn as nn from torch import optim sys.path.append("..") sys.path.append("../..") from cores import Options from util import mosaic,util,ffmpeg,filt,data from util import image_processing as impro from models import unet_model,BiSeNet_model ''' --------------------------Get options-------------------------- ''' opt = Options() opt.parser.add_argument('--gpu_id',type=int,default=0, help='') opt.parser.add_argument('--lr',type=float,default=0.001, help='') opt.parser.add_argument('--finesize',type=int,default=360, help='') opt.parser.add_argument('--loadsize',type=int,default=400, help='') opt.parser.add_argument('--batchsize',type=int,default=8, help='') opt.parser.add_argument('--model',type=str,default='BiSeNet', help='BiSeNet or UNet') opt.parser.add_argument('--maxepoch',type=int,default=100, help='') opt.parser.add_argument('--savefreq',type=int,default=5, help='') opt.parser.add_argument('--maxload',type=int,default=1000000, help='') opt.parser.add_argument('--continuetrain', action='store_true', help='') opt.parser.add_argument('--startepoch',type=int,default=0, help='') opt.parser.add_argument('--dataset',type=str,default='./datasets/face/', help='') opt.parser.add_argument('--savename',type=str,default='face', help='')
import os import sys sys.path.append("..") from cores import Options opt = Options() import random import datetime import time import warnings warnings.filterwarnings(action='ignore') import numpy as np import cv2 import torch from models import runmodel, loadmodel import util.image_processing as impro from util import util, mosaic, data opt.parser.add_argument('--datadir', type=str, default='../datasets/draw/face', help='') opt.parser.add_argument('--savedir', type=str, default='../datasets/pix2pix/face', help='') opt.parser.add_argument('--name', type=str, default='', help='save name') opt.parser.add_argument( '--mod',
import os import sys sys.path.append("..") sys.path.append("../..") from cores import Options opt = Options() import numpy as np import cv2 import random import torch import torch.nn as nn import time from util import util,data,dataloader from util import image_processing as impro from models import BVDNet,model_util from skimage.metrics import structural_similarity from tensorboardX import SummaryWriter ''' --------------------------Get options-------------------------- ''' opt.parser.add_argument('--N',type=int,default=2, help='The input tensor shape is H×W×T×C, T = 2N+1') opt.parser.add_argument('--S',type=int,default=3, help='Stride of 3 frames') # opt.parser.add_argument('--T',type=int,default=7, help='T = 2N+1') opt.parser.add_argument('--M',type=int,default=100, help='How many frames read from each videos') opt.parser.add_argument('--lr',type=float,default=0.0002, help='') opt.parser.add_argument('--beta1',type=float,default=0.9, help='') opt.parser.add_argument('--beta2',type=float,default=0.999, help='') opt.parser.add_argument('--finesize',type=int,default=256, help='')