parser.add_argument('--image_set', type=str) args = parser.parse_args() image_set = args.image_set Lref = loadtxt(args.transformed_reference) Nc = len(Lref) ## Read the estimated orientations data_gen = [json.loads(y) for y in open(args.input_file).readlines()] qq = [ (a, mtq(fixit(array(b['matrix'])).T), b['time']['edge'] + b['time']['est']) for a, b in enumerate(data_gen) ] print qq ## Get orientations ordered by frame number Lest = array([Quat(x).q for _, x, _ in sorted(qq)]) times = array([t for _, _, t in sorted(qq)]) assert len(Lref) == len(Lest) # ## Fix and normalize reference quaternions. if image_set == 'apast': fix_reference_quaternions_apa(Lest)
if __name__ == '__main__': with open('bundle.out') as fp: aa = fp.readlines() Nc = int(aa[1].split(' ')[0]) Lori = zeros((Nc, 3,3)) for n in range(Nc): for j in range(3): Lori[n,j] = array([float(x) for x in aa[3+n*5+j].split(' ')]) Lq = zeros((Nc,4)) for n in range(Nc): ori = Quat(mtq(Lori[n])) Lq[n] = ori.normalize().q * array([1,-1,1,1]) ## Read the tardiff output ## Get orientations ordered by frame number Lr = loadtxt('tardiff_undistorted_quaternions.dat') ## fix and normalize reference quaternions. fix_reference_quaternions(Lr) Le = zeros((Nc,4))