コード例 #1
0
ファイル: tracks.py プロジェクト: bigcat9139/square-tracking
    # that is, if f.min() > fmin for a track, then it still aligns at zero
    rncorrs = helpy.pad_uneven([
                    rn[np.searchsorted(f, fmin):np.searchsorted(f, fmax)]
                              for f, rn in rncorrs if f.min() <= fmin ],
                    np.nan)
    tcorr = np.arange(fmin, fmax)/fps
    meancorr = np.nanmean(rncorrs, 0)
    added = np.sum(np.isfinite(rncorrs), 0)
    errcorr = np.nanstd(rncorrs, 0)/np.sqrt(added - 1)
    sigma = errcorr + errcorr.std() # add something small to prevent 0
    if args.verbose:
        print "Merged rn corrs"

    # Fit to capped exponential growth
    fitform = lambda s, v_D, D=D_R:\
                  0.5*np.sign(s)*v_D*(1 - corr.exp_decay(np.abs(s), 1/D))
    fitstr = r'$\frac{v_0}{2D_R}(1 - e^{-D_R|s|})\operatorname{sign}(s)$'
    # p0 = [v_0/D_R, D_R]
    p0 = [1]
    if not args.nn or args.fitdr:
        p0 += [D_R]

    print "============="
    print "Fits to <rn>:"
    try:
        popt, pcov = curve_fit(fitform, tcorr, meancorr, p0=p0, sigma=sigma)
    except RuntimeError as e:
        try:
            p0[0] = -1 # If dots are backwards, has trouble fitting with v0>0
            popt, pcov = curve_fit(fitform, tcorr, meancorr, p0=p0, sigma=sigma)
        except RuntimeError as e:
コード例 #2
0
    sincorrs = [ corr.autocorr(np.sin(otrackset), cumulant=False, norm=False)
                for otrackset in otracksets.values() ]

    # Gather all the track correlations and average them
    allcorr = coscorrs + sincorrs
    allcorr = helpy.pad_uneven(allcorr, np.nan)
    tcorr = np.arange(allcorr.shape[1])/fps
    meancorr = np.nanmean(allcorr, 0)
    errcorr = np.nanstd(allcorr, 0)/sqrt(len(allcorr))
    if verbose:
        print "Merged nn corrs"

    # Fit to exponential decay
    tmax = 50
    fmax = np.searchsorted(tcorr, tmax)
    fitform = lambda *args, **kwargs: 0.5*corr.exp_decay(*args, **kwargs)
    popt, pcov = curve_fit(fitform, tcorr[:fmax], meancorr[:fmax],
                           p0=[1], sigma=errcorr[:fmax].mean() + errcorr[:fmax])
    D_R = 1/popt[0]
    print 'D_R: {:.4f}'.format(D_R)

    pl.figure()
    plot_individual = True
    if plot_individual:
        pl.semilogy(tcorr, allcorr.T, 'b', alpha=.25)
    pl.errorbar(tcorr, meancorr, errcorr, None, 'ok',
                 capthick=0, elinewidth=1, errorevery=3)
    pl.plot(tcorr, fitform(tcorr, *popt), 'r',
             label=r"$\frac{1}{2}e^{-D_R t}$" + '\n' +\
                    "$D_R$: {:.4f}, $1/D_R$: {:.3f}".format(D_R, 1/D_R))
    pl.xlim(0, tmax)