#fingerprint #retina_scan # ----------------------------------------------------------------------------- # Define how the generated records are to be corrupted (using methods from # the corruptor.py module). # For a value edit corruptor, the sum or the four probabilities given must # be 1.0. # edit_corruptor = \ corruptor.CorruptValueEdit(\ position_function = corruptor.position_mod_normal, char_set_funct = basefunctions.char_set_ascii, insert_prob = 0.5, delete_prob = 0.5, substitute_prob = 0.0, transpose_prob = 0.0) edit_corruptor2 = \ corruptor.CorruptValueEdit(\ position_function = corruptor.position_mod_uniform, char_set_funct = basefunctions.char_set_ascii, insert_prob = 0.25, delete_prob = 0.25, substitute_prob = 0.25, transpose_prob = 0.25) surname_misspell_corruptor = \ corruptor.CorruptCategoricalValue(\
def testDataGeneration(self, test_case): """Test the overall generation of a data set according to the parameters given by checking if the generated data sets follows the parameter specification given. """ rec_id_attr_name = test_case[0] num_org_rec = test_case[1] num_dup_rec = test_case[2] max_duplicate_per_record = test_case[3] num_duplicates_distribution = test_case[4] max_modification_per_attr = test_case[5] num_modification_per_record = test_case[6] test_res_list = ['', 'Test case parameters:'] test_res_list.append(' rec_id_attr_name = %s' % (rec_id_attr_name)) test_res_list.append(' num_org_rec = %s' % (num_org_rec)) test_res_list.append(' num_dup_rec = %s' % (num_dup_rec)) test_res_list.append(' max_duplicate_per_record = %s' % \ (max_duplicate_per_record)) test_res_list.append(' num_duplicates_distribution = %s' % \ (num_duplicates_distribution)) test_res_list.append(' max_modification_per_attr = %s' % \ (max_modification_per_attr)) test_res_list.append(' num_modification_per_record = %s' % \ (num_modification_per_record)) test_res_list.append('') # Define the attributes to be generated (based on methods from - - - - - # the generator.py module) # Individual attributes # given_name_attr = \ generator.GenerateFreqAttribute(attribute_name = 'given-name', freq_file_name = '../lookup-files/givenname_freq.csv', has_header_line = False, unicode_encoding = unicode_encoding_used) surnname_attr = \ generator.GenerateFreqAttribute(attribute_name = 'surname', freq_file_name = '../lookup-files/surname-freq.csv', has_header_line = False, unicode_encoding = unicode_encoding_used) postcode_attr = \ generator.GenerateFreqAttribute(attribute_name = 'postcode', freq_file_name = '../lookup-files/postcode_act_freq.csv', has_header_line = False, unicode_encoding = unicode_encoding_used) oz_phone_num_attr = \ generator.GenerateFuncAttribute(attribute_name = 'oz-phone-number', function = attrgenfunct.generate_phone_number_australia) credit_card_attr = \ generator.GenerateFuncAttribute(attribute_name = 'credit-card-number', function = attrgenfunct.generate_credit_card_number) age_uniform_attr = \ generator.GenerateFuncAttribute(attribute_name = 'age-uniform', function = attrgenfunct.generate_uniform_age, parameters = [0,120]) age_death_normal_attr = \ generator.GenerateFuncAttribute(attribute_name = 'age-death-normal', function = attrgenfunct.generate_normal_age, parameters = [80,20,0,120]) income_normal_attr = \ generator.GenerateFuncAttribute(attribute_name = 'income-normal', function = attrgenfunct.generate_normal_value, parameters = [75000, 20000, 0, 1000000, 'float2']) rating_normal_attr = \ generator.GenerateFuncAttribute(attribute_name = 'rating-normal', function = attrgenfunct.generate_normal_value, parameters = [2.5, 1.0, 0.0, 5.0, 'int']) # Compund (dependent) attributes # gender_city_comp_attr = \ generator.GenerateCateCateCompoundAttribute(\ categorical1_attribute_name = 'gender', categorical2_attribute_name = 'city', lookup_file_name = '../lookup-files/gender-city.csv', has_header_line = True, unicode_encoding = unicode_encoding_used) gender_income_comp_attr = \ generator.GenerateCateContCompoundAttribute(\ categorical_attribute_name = 'alt-gender', continuous_attribute_name = 'income', continuous_value_type = 'float1', lookup_file_name = '../lookup-files/gender-income.csv', has_header_line = False, unicode_encoding = unicode_encoding_used) gender_city_salary_comp_attr = \ generator.GenerateCateCateContCompoundAttribute(\ categorical1_attribute_name = 'alt-gender-2', categorical2_attribute_name = 'town', continuous_attribute_name = 'salary', continuous_value_type = 'float4', lookup_file_name = \ '../lookup-files/gender-city-income.csv', has_header_line = False, unicode_encoding = unicode_encoding_used) age_blood_pressure_comp_attr = \ generator.GenerateContContCompoundAttribute(\ continuous1_attribute_name = 'medical-age', continuous2_attribute_name = 'blood-pressure', continuous1_funct_name = 'uniform', continuous1_funct_param = [10,110], continuous2_function = \ contdepfunct.blood_pressure_depending_on_age, continuous1_value_type = 'int', continuous2_value_type = 'float3') age_salary_comp_attr = \ generator.GenerateContContCompoundAttribute(\ continuous1_attribute_name = 'medical-age-2', continuous2_attribute_name = 'medical-salary', continuous1_funct_name = 'normal', continuous1_funct_param = [45,20,25,130], continuous2_function = \ contdepfunct.salary_depending_on_age, continuous1_value_type = 'int', continuous2_value_type = 'float1') # Define how attribute values are to be modified (corrupted) - - - - - - # (based on methods from the corruptor.py module) # average_edit_corruptor = \ corruptor.CorruptValueEdit(\ position_function = corruptor.position_mod_normal, char_set_funct = basefunctions.char_set_ascii, insert_prob = 0.25, delete_prob = 0.25, substitute_prob = 0.25, transpose_prob = 0.25) sub_tra_edit_corruptor = \ corruptor.CorruptValueEdit(\ position_function = corruptor.position_mod_uniform, char_set_funct = basefunctions.char_set_ascii, insert_prob = 0.0, delete_prob = 0.0, substitute_prob = 0.5, transpose_prob = 0.5) ins_del_edit_corruptor = \ corruptor.CorruptValueEdit(\ position_function = corruptor.position_mod_normal, char_set_funct = basefunctions.char_set_ascii, insert_prob = 0.5, delete_prob = 0.5, substitute_prob = 0.0, transpose_prob = 0.0) surname_misspell_corruptor = \ corruptor.CorruptCategoricalValue(\ lookup_file_name = '../lookup-files/surname-misspell.csv', has_header_line = False, unicode_encoding = unicode_encoding_used) ocr_corruptor = corruptor.CorruptValueOCR(\ position_function = corruptor.position_mod_uniform, lookup_file_name = '../lookup-files/ocr-variations.csv', has_header_line = False, unicode_encoding = unicode_encoding_used) keyboard_corruptor = corruptor.CorruptValueKeyboard(\ position_function = corruptor.position_mod_normal, row_prob = 0.5, col_prob = 0.5) phonetic_corruptor = corruptor.CorruptValuePhonetic(\ position_function = corruptor.position_mod_uniform, lookup_file_name = \ '../lookup-files/phonetic-variations.csv', has_header_line = False, unicode_encoding = unicode_encoding_used) missing_val_empty_corruptor = corruptor.CorruptMissingValue() missing_val_miss_corruptor = corruptor.CorruptMissingValue(\ missing_value='miss') missing_val_unkown_corruptor = corruptor.CorruptMissingValue(\ missing_value='unknown') # Define the attributes to be generated for this data set, and the data # set itself # attr_name_list = ['given-name', 'surname', 'city', 'postcode', 'oz-phone-number', 'credit-card-number', 'age-uniform', 'age-death-normal', 'income-normal', 'rating-normal', 'gender', 'alt-gender', 'alt-gender-2', 'town', 'income', 'salary', 'medical-age', 'blood-pressure', 'medical-age-2', 'medical-salary'] attr_data_list = [given_name_attr, surnname_attr, postcode_attr, oz_phone_num_attr, credit_card_attr, age_uniform_attr, age_death_normal_attr, income_normal_attr, rating_normal_attr, gender_city_comp_attr, gender_income_comp_attr, gender_city_salary_comp_attr, age_blood_pressure_comp_attr, age_salary_comp_attr] # Initialise the main data generator # test_data_generator = generator.GenerateDataSet(\ output_file_name = 'no-file-name', write_header_line = True, rec_id_attr_name = rec_id_attr_name, number_of_records = num_org_rec, attribute_name_list = attr_name_list, attribute_data_list = attr_data_list, unicode_encoding = unicode_encoding_used) # Define distribution of how likely an attribute will be selected for # modification (sum of probabilities must be 1.0) # attr_mod_prob_dictionary = {'given-name':0.1, 'surname':0.1, 'city':0.1, 'postcode':0.1, 'oz-phone-number':0.1, 'age-death-normal':0.1, 'income-normal':0.1,'gender':0.1, 'town':0.1, 'income':0.1} # For each attribute, a distribution of which corruptors to apply needs # to be given, with the sum ofprobabilities to be 1.0 for each attribute # attr_mod_data_dictionary = \ {'given-name':[(0.25, average_edit_corruptor), (0.25, ocr_corruptor), (0.25, phonetic_corruptor), (0.25, missing_val_miss_corruptor)], 'surname':[(0.5, surname_misspell_corruptor), (0.5, average_edit_corruptor)], 'city':[(0.5, keyboard_corruptor), (0.5, missing_val_empty_corruptor)], 'postcode':[(0.3, missing_val_unkown_corruptor), (0.7, sub_tra_edit_corruptor)], 'oz-phone-number':[(0.2, missing_val_empty_corruptor), (0.4, sub_tra_edit_corruptor), (0.4, keyboard_corruptor)], 'age-death-normal':[(1.0, missing_val_unkown_corruptor)], 'income-normal':[(0.3, keyboard_corruptor), (0.3, ocr_corruptor), (0.4, missing_val_empty_corruptor)], 'gender':[(0.5, sub_tra_edit_corruptor), (0.5, ocr_corruptor)], 'town':[(0.2, average_edit_corruptor), (0.3, ocr_corruptor), (0.2, keyboard_corruptor), (0.3, phonetic_corruptor)], 'income':[(1.0, missing_val_miss_corruptor)]} # Initialise the main data corruptor # test_data_corruptor = corruptor.CorruptDataSet(\ number_of_org_records = num_org_rec, number_of_mod_records = num_dup_rec, attribute_name_list = attr_name_list, max_num_dup_per_rec = max_duplicate_per_record, num_dup_dist = num_duplicates_distribution, max_num_mod_per_attr = max_modification_per_attr, num_mod_per_rec = num_modification_per_record, attr_mod_prob_dict = attr_mod_prob_dictionary, attr_mod_data_dict = attr_mod_data_dictionary) passed = True # Assume the test will pass :-) # Start the generation process # try: rec_dict = test_data_generator.generate() except Exception as exce_value: # Something bad happened test_res_list.append(' generator.generate() raised Exception: "%s"' % \ (str(exce_value))) return test_res_list # Abandon test num_org_rec_gen = len(rec_dict) if (num_org_rec_gen != num_org_rec): passed = False test_res_list.append(' Wrong number of original records generated:' + \ ' %d, expected %d' % (num_org_rec_gen,num_org_rec)) # Corrupt (modify) the original records into duplicate records # try: rec_dict = test_data_corruptor.corrupt_records(rec_dict) except Exception as exce_value: # Something bad happened test_res_list.append(' corruptor.corrupt_records() raised ' + \ 'Exception: "%s"' % (str(exce_value))) return test_res_list # Abandon test num_dup_rec_gen = len(rec_dict)-num_org_rec_gen if (num_dup_rec_gen != num_dup_rec): passed = False test_res_list.append(' Wrong number of duplicate records generated:' + \ ' %d, expected %d' % (num_dup_rec_gen,num_dup_rec)) num_dup_counts = {} # Count how many records have a certain number of # duplicates # Do tests on all generated records # for (rec_id,rec_list) in rec_dict.iteritems(): if (len(rec_list) != len(attr_name_list)): passed = False test_res_list.append(' Record with identifier "%s" contains wrong' % \ (rec_id) + ' number of attributes: ' + \ ' %d, expected %d' % (len(rec_list), len(attr_name_list))) if ('org' in rec_id): # An original record # Check the number of duplicates for this record is what is expected # num_dups = 0 rec_num = rec_id.split('-')[1] for d in range(max_duplicate_per_record*2): tmp_rec_id = 'rec-%s-dup-%d' % (rec_num,d) if tmp_rec_id in rec_dict: num_dups += 1 if (num_dups > max_duplicate_per_record): passed = False test_res_list.append(' Too many duplicate records for original' + \ ' record "%s": %d' % (rec_id), num_dups) d_count = num_dup_counts.get(num_dups, 0) + 1 num_dup_counts[num_dups] = d_count # Check no duplicate number is outside expected range # for d in range(max_duplicate_per_record,max_duplicate_per_record*2): tmp_rec_id = 'rec-%s-dup-%d' % (rec_num,d) if (tmp_rec_id in rec_dict): passed = False test_res_list.append(' Illegal duplicate number: %s' % \ (tmp_rec_id)+' (larger than max. number ' + \ 'of duplicates per record %sd' % \ (max_duplicate_per_record)) # Check values in certain attributes only contain letters # for i in [0,1,2,10,11,12,13]: test_val = rec_list[i].replace(' ','') test_val = test_val.replace('-','') test_val = test_val.replace("'",'') if (test_val.isalpha() == False): passed = False test_res_list.append(' Value in attribute "%s" is not only ' % \ (attr_name_list[i]) + 'letters:') test_res_list.append(' Org: %s' % (str(rec_list))) # Check values in certain attributes only contain digits # for i in [3,4,5,6,7,8,9,14,15,16,17,18,19]: test_val = rec_list[i].replace(' ','') test_val = test_val.replace('.','') if (test_val.isdigit() == False): passed = False test_res_list.append(' Value in attribute "%s" is not only ' % \ (attr_name_list[i]) + 'digits:') test_res_list.append(' Org: %s' % (str(rec_list))) # Check age values are in range # for i in [6,7,16]: test_val = int(rec_list[i].strip()) if ((test_val < 0) or (test_val > 130)): passed = False test_res_list.append(' Age value in attribute "%s" is out of' % \ (attr_name_list[i]) + ' range:') test_res_list.append(' Org: %s' % (str(rec_list))) # Check length of postcode, telephone and credit card numbers # if (len(rec_list[3]) != 4): passed = False test_res_list.append(' Postcode has not 4 digits:') test_res_list.append(' Org: %s' % (str(rec_list))) if ((len(rec_list[4]) != 12) or (rec_list[4][0] != '0')): passed = False test_res_list.append(' Australian phone number has wrong format:') test_res_list.append(' Org: %s' % (str(rec_list))) # Check 'rating' is between 0 and 5 # test_val = int(rec_list[9].strip()) if ((test_val < 0) or (test_val > 5)): passed = False test_res_list.append(' "rating-normal" value is out of range:') test_res_list.append(' Org: %s' % (str(rec_list))) # Check gender values # test_val = rec_list[10] if (test_val not in ['male','female']): passed = False test_res_list.append(' "gender" value is out of range:') test_res_list.append(' Org: %s' % (str(rec_list))) test_val = rec_list[11] if (test_val not in ['m','f','na']): passed = False test_res_list.append(' "alt-gender" value is out of range:') test_res_list.append(' Org: %s' % (str(rec_list))) test_val = rec_list[12] if (test_val not in ['male','female']): passed = False test_res_list.append(' "alt-gender-2" value is out of range:') test_res_list.append(' Org: %s' % (str(rec_list))) if ('dup' in rec_id): # A duplicate record # Get the corresponding original record # org_rec_id = 'rec-%s-org' % (rec_id.split('-')[1]) org_rec_list = rec_dict[org_rec_id] # Check the duplicate number # dup_num = int(rec_id.split('-')[-1]) if ((dup_num < 0) or (dup_num > max_duplicate_per_record-1)): passed = False test_res_list.append(' Duplicate record with identifier "%s" ' % \ (rec_id) + ' has an illegal duplicate number:' \ + ' %d' % (dup_num)) test_res_list.append(' Org: %s' % (str(org_rec_list))) test_res_list.append(' Dup: %s' % (str(rec_list))) # Check that a duplicate record contains the expected - - - - - - - - - # number of modifications num_diff_val = 0 # Count how many values are different for i in range(len(rec_list)): # Check all attribute values if (rec_list[i] != org_rec_list[i]): num_diff_val += 1 if (num_diff_val == 0): # No differences between org and dup record passed = False test_res_list.append(' Duplicate record with identifier "%s" ' % \ (rec_id) + 'is the same as it original record') test_res_list.append(' Org: %s' % (str(org_rec_list))) test_res_list.append(' Dup: %s' % (str(rec_list))) if (num_diff_val < num_modification_per_record): passed = False test_res_list.append(' Duplicate record with identifier "%s" ' % \ (rec_id) + 'contains less modifications ' + \ 'than expected (%d instead of %d)' % \ (num_diff_val, num_modification_per_record)) test_res_list.append(' Org: %s' % (str(org_rec_list))) test_res_list.append(' Dup: %s' % (str(rec_list))) # Check that certain attributes have not been modified # for i in [5,6,9,11,12,15,16,17,18,19]: if (rec_list[i] != org_rec_list[i]): passed = False test_res_list.append(' Duplicate record with identifier "%s" ' % \ (rec_id) + 'contains modified attribute ' + \ 'values that should not be modified') test_res_list.append(' Org: %s' % (str(org_rec_list))) test_res_list.append(' Dup: %s' % (str(rec_list))) # Check the content of certain attribute values, and how they # differ between original and duplicate records # # Due to the possibility thatmultiple modifications are applied on the # same attribute these tests are limited test_org_val = org_rec_list[2] # City test_dup_val = rec_list[2] if (test_dup_val != ''): if (len(test_org_val) != len(test_dup_val)): passed = False test_res_list.append(' "city" values have different length:') test_res_list.append(' Org: %s' % (str(org_rec_list))) test_res_list.append(' Dup: %s' % (str(rec_list))) test_org_val = org_rec_list[4] # Australian phone number test_dup_val = rec_list[4] if (test_dup_val != ''): if (len(test_org_val) != len(test_dup_val)): passed = False test_res_list.append(' "oz-phone-number" values have different' + \ ' length:') test_res_list.append(' Org: %s' % (str(org_rec_list))) test_res_list.append(' Dup: %s' % (str(rec_list))) test_org_val = org_rec_list[7] # Age-death-normal test_dup_val = rec_list[7] if (test_dup_val != 'unknown'): if (test_org_val != test_dup_val): passed = False test_res_list.append(' Wrong value for "age-death-normal":') test_res_list.append(' Org: %s' % (str(org_rec_list))) test_res_list.append(' Dup: %s' % (str(rec_list))) test_org_val = org_rec_list[14] # Income test_dup_val = rec_list[14] if (test_dup_val != 'miss'): if (test_org_val != test_dup_val): passed = False test_res_list.append(' Wrong value for "income":') test_res_list.append(' Org: %s' % (str(org_rec_list))) test_res_list.append(' Dup: %s' % (str(rec_list))) test_res_list.append(' Distribution of duplicates: ("%s" expected)' % \ num_duplicates_distribution) dup_keys = num_dup_counts.keys() dup_keys.sort() for d in dup_keys: test_res_list.append(' %d: %d records' % (d, num_dup_counts[d])) test_res_list.append('') if (passed == True): test_res_list.append(' All tests passed') test_res_list.append('') return test_res_list