def pso(self, n_particles, n_iterations, lowerLimit, upperLimit, X2_chain, threadCount=1, print_positions=False): """ returns the best fit for the lense model on catalogue basis with particle swarm optimizer """ pso = ParticleSwarmOptimizer(X2_chain, lowerLimit, upperLimit, n_particles, threads=threadCount) X2_list = [] vel_list = [] pos_list = [] for swarm in pso.sample(n_iterations): X2_list.append(pso.gbest.fitness * 2) vel_list.append(pso.gbest.velocity) pos_list.append(pso.gbest.position) print(pso.gbest.fitness / np.sum(X2_chain.mask), 'reduced X^2 of best position') if print_positions == True: print(pso.gbest.position) result = tuple(pso.gbest.position) return result, [X2_list, pos_list, vel_list]
def pso(self, n_particles, n_iterations, lower_start=None, upper_start=None, threadCount=1, init_pos=None, mpi=False, print_key='PSO'): """ returns the best fit for the lense model on catalogue basis with particle swarm optimizer """ if lower_start is None or upper_start is None: lower_start, upper_start = np.array(self.lower_limit), np.array(self.upper_limit) print("PSO initialises its particles with default values") else: lower_start = np.maximum(lower_start, self.lower_limit) upper_start = np.minimum(upper_start, self.upper_limit) if mpi is True: pso = MpiParticleSwarmOptimizer(self.chain, lower_start, upper_start, n_particles, threads=1) if pso.isMaster(): print('MPI option chosen') else: pso = ParticleSwarmOptimizer(self.chain, lower_start, upper_start, n_particles, threads=threadCount) if init_pos is None: init_pos = (upper_start - lower_start) / 2 + lower_start if not init_pos is None: pso.gbest.position = init_pos pso.gbest.velocity = [0]*len(init_pos) pso.gbest.fitness, _ = self.chain.likelihood(init_pos) X2_list = [] vel_list = [] pos_list = [] time_start = time.time() if pso.isMaster(): print('Computing the %s ...' % print_key) num_iter = 0 for swarm in pso.sample(n_iterations): X2_list.append(pso.gbest.fitness*2) vel_list.append(pso.gbest.velocity) pos_list.append(pso.gbest.position) num_iter += 1 if pso.isMaster(): if num_iter % 10 == 0: print(num_iter) if not mpi: result = pso.gbest.position else: result = MpiUtil.mpiBCast(pso.gbest.position) #if (pso.isMaster() and mpi is True) or self.chain.sampling_option == 'X2_catalogue': if mpi is True and not pso.isMaster(): pass else: lens_dict, source_dict, lens_light_dict, ps_dict, kwargs_cosmo = self.chain.param.args2kwargs(result) print(pso.gbest.fitness * 2 / (self.chain.effectiv_numData_points()), 'reduced X^2 of best position') print(pso.gbest.fitness, 'logL') print(self.chain.effectiv_numData_points(), 'effective number of data points') print(lens_dict, 'lens result') print(source_dict, 'source result') print(lens_light_dict, 'lens light result') print(ps_dict, 'point source result') print(kwargs_cosmo, 'cosmo result') time_end = time.time() print(time_end - time_start, 'time used for PSO', print_key) print('===================') return result, [X2_list, pos_list, vel_list, []]
def pso(self, n_particles=10, n_iterations=10, lowerLimit=-0.2, upperLimit=0.2, threadCount=1, mpi=False, print_key='default'): """ returns the best fit for the lense model on catalogue basis with particle swarm optimizer """ init_pos = self.chain.get_args(self.chain.kwargs_data_init) num_param = self.chain.num_param lowerLimit = [lowerLimit] * num_param upperLimit = [upperLimit] * num_param if mpi is True: pso = MpiParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit, n_particles, threads=1) else: pso = ParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit, n_particles, threads=threadCount) if not init_pos is None: pso.gbest.position = init_pos pso.gbest.velocity = [0] * len(init_pos) pso.gbest.fitness, _ = self.chain.likelihood(init_pos) X2_list = [] vel_list = [] pos_list = [] time_start = time.time() if pso.isMaster(): print('Computing the %s ...' % print_key) num_iter = 0 for swarm in pso.sample(n_iterations): X2_list.append(pso.gbest.fitness * 2) vel_list.append(pso.gbest.velocity) pos_list.append(pso.gbest.position) num_iter += 1 if pso.isMaster(): if num_iter % 10 == 0: print(num_iter) if not mpi: result = pso.gbest.position else: result = MpiUtil.mpiBCast(pso.gbest.position) kwargs_data = self.chain.update_data(result) if mpi is True and not pso.isMaster(): pass else: time_end = time.time() print("Shifts found: ", result) print(time_end - time_start, 'time used for PSO', print_key) return kwargs_data, [X2_list, pos_list, vel_list, []]
def optimise(self): self.time_start = time.time() if self.tweakml_type == "PS_from_residuals": self.A_correction, _, _, _, _ = self.compute_set_A_correction( self.theta_init) if self.mpi is True: pso = MpiParticleSwarmOptimizer(self, self.lower_limit, self.upper_limit, self.n_particles) else: pso = ParticleSwarmOptimizer(self, self.lower_limit, self.upper_limit, self.n_particles, threads=self.max_thread) X2_list = [] vel_list = [] pos_list = [] num_iter = 0 f = open(self.savefile, "wb") for swarm in pso.sample(self.n_iter): print "iteration : ", num_iter X2_list_c = np.asarray(pso.gbest.fitness) * -2.0 X2_list.append(X2_list_c) vel_list_c = np.asarray(pso.gbest.velocity) vel_list.append(vel_list_c.tolist()) pos_list_c = np.asarray(pso.gbest.position) pos_list.append(pos_list_c.tolist()) print X2_list_c, vel_list_c, pos_list_c data = np.concatenate(([X2_list_c], vel_list_c, pos_list_c)) data = [str(d) for d in data.tolist()] f.write(" ".join(data)) f.write("\n") # np.savetxt(f, data.transpose(), delimiter=',', newline='\n') num_iter += 1 f.close() self.chain_list = [X2_list, pos_list, vel_list] self.chi2_mini, self.best_param = self.get_best_param() self.time_stop = time.time() return self.chain_list