def __init__(self): """Initialize data set and all test cases for assignment. Notes: * All sizes requested are transposed to account for column matrix as default vector in matlab. a4_rand(..) then returns a transposed matrix to have the correct shape. """ super(A4Run, self).__init__() data = loadmat(os.path.join(os.getcwd(), 'Data/data.mat')) self.data_sets = data['data'] self.test_rbm_w = self.a4_rand([256, 100], 0) * 2 - 1 self.small_test_rbm_w = self.a4_rand([256, 10], 0) * 2 - 1 self.data_1_case = self.sample_bernoulli(self.extract_mini_batch( self.data_sets['training'], 0, 1)['inputs'], report_calls=False) self.data_10_cases = self.sample_bernoulli(self.extract_mini_batch( self.data_sets['training'], 99, 10)['inputs'], report_calls=False) self.data_37_cases = self.sample_bernoulli(self.extract_mini_batch( self.data_sets['training'], 199, 37)['inputs'], report_calls=False) self.test_hidden_state_1_case = self.sample_bernoulli( self.a4_rand([1, 100], 0), report_calls=False) self.test_hidden_state_10_cases = self.sample_bernoulli( self.a4_rand([10, 100], 1), report_calls=False) self.test_hidden_state_37_cases = self.sample_bernoulli( self.a4_rand([37, 100], 2), report_calls=False)
def __init__(self): """ Notes: * All sizes requested are transposed to account for column matrix as default vector in matlab. a4_rand(..) then returns a transposed matrix to have the correct shape. """ a4_randomness_source = loadmat(os.path.join(os.getcwd(), 'Data/a4_randomness_source.mat')) self.randomness_source = a4_randomness_source['randomness_source']
def __init__(self): """ Notes: * All sizes requested are transposed to account for column matrix as default vector in matlab. a4_rand(..) then returns a transposed matrix to have the correct shape. """ a4_randomness_source = loadmat( os.path.join(os.getcwd(), 'Data/a4_randomness_source.mat')) self.randomness_source = a4_randomness_source['randomness_source']
def __init__(self): """Initialize data set and all test cases for assignment. Notes: * All sizes requested are transposed to account for column matrix as default vector in matlab. a4_rand(..) then returns a transposed matrix to have the correct shape. """ super(A4Run, self).__init__() data = loadmat(os.path.join(os.getcwd(), 'Data/data.mat')) self.data_sets = data['data'] self.test_rbm_w = self.a4_rand([256, 100], 0) * 2 - 1 self.small_test_rbm_w = self.a4_rand([256, 10], 0) * 2 - 1 self.data_1_case = self.sample_bernoulli(self.extract_mini_batch(self.data_sets['training'], 0, 1)['inputs'], report_calls=False) self.data_10_cases = self.sample_bernoulli(self.extract_mini_batch(self.data_sets['training'], 99, 10)['inputs'], report_calls=False) self.data_37_cases = self.sample_bernoulli(self.extract_mini_batch(self.data_sets['training'], 199, 37)['inputs'], report_calls=False) self.test_hidden_state_1_case = self.sample_bernoulli(self.a4_rand([1, 100], 0), report_calls=False) self.test_hidden_state_10_cases = self.sample_bernoulli(self.a4_rand([10, 100], 1), report_calls=False) self.test_hidden_state_37_cases = self.sample_bernoulli(self.a4_rand([37, 100], 2), report_calls=False)
def __init__(self): """Initialize data set and all test cases for assignment. """ data = loadmat(os.path.join(os.getcwd(), 'Data/data.mat')) self.data_sets = data['data']