def test_google_output(): # check the characteristics of the sciensano data loda function df = get_google_mobility_data(update=False) # set of variable names as output assert set(df.columns) == set([ 'retail_recreation', 'grocery', 'parks', 'transport', 'work', 'residential' ]) # index is a datetime index with daily frequency assert isinstance(df.index, pd.DatetimeIndex) assert df.index.freq == 'D'
job = 'FULL' # --------- # Load data # --------- # Contact matrices initN, Nc_all = model_parameters.get_integrated_willem2012_interaction_matrices( ) levels = initN.size # Sciensano public data df_sciensano = sciensano.get_sciensano_COVID19_data(update=False) # Sciensano mortality data df_sciensano_mortality = sciensano.get_mortality_data() # Google Mobility data df_google = mobility.get_google_mobility_data(update=False) # Serological data df_sero_herzog, df_sero_sciensano = sciensano.get_serological_data() # --------------------------------- # Time-dependant parameter function # --------------------------------- def compliance_func(t, states, param, l, effectivity): # Convert tau and l to dates l_days = pd.Timedelta(l, unit='D') # Measures start_measures = pd.to_datetime('2020-03-15') if t < start_measures: return param