ll = np.array(dim * [grid.min()]) - 3 * dx ur = np.array(dim * [grid.max()]) + 3 * dx virtual_grid_shape = np.abs(ur-ll) / dx + 1 # The (i,j,...) indices of the grid points, taking `ll` as origin. int_grid = np.round((grid - ll) / dx).astype(np.int) # Initial conditions th, phi, r = cart2sph(grid[:, 0], grid[:, 1], grid[:, 2]) u = np.cos(phi + np.pi / 2) # Let's keep a copy of the initial conditions initial_u = u.copy() # Build interpolation and differential matrix. E = build_interp_matrix(int_grid, cp, dx, p, ll, virtual_grid_shape) L = build_diff_matrix(int_grid, dx, virtual_grid_shape) M = build_linear_diagonal_splitting(L, E) # Compute eigenvalues t = time() print "Computing eigenvalues..." Evals, Evecs = splinalg.eigs(-M, k=32, which="SM") sorted_indices = np.argsort(Evals) print "...took", time() -t xp, yp, zp = s.parametric_grid(65) _, phi_plot, _ = cart2sph(xp, yp, zp) Eplot = build_interp_matrix(int_grid, np.column_stack((xp.ravel(), yp.ravel(), zp.ravel())), dx, p, ll, virtual_grid_shape)
ll = np.array(dim * [grid.min()]) - 3 * dx ur = np.array(dim * [grid.max()]) + 3 * dx virtual_grid_shape = np.abs(ur - ll) / dx + 1 # The (i,j,...) indices of the grid points, taking `ll` as origin. int_grid = np.round((grid - ll) / dx).astype(np.int) # Initial conditions th, phi, r = cart2sph(grid[:, 0], grid[:, 1], grid[:, 2]) u = np.cos(phi + np.pi / 2) # Let's keep a copy of the initial conditions initial_u = u.copy() # Build interpolation and differential matrix. E = build_interp_matrix(int_grid, cp, dx, p, ll, virtual_grid_shape) L = build_diff_matrix(int_grid, dx, virtual_grid_shape) xp, yp, zp = s.parametric_grid(65) _, phi_plot, _ = cart2sph(xp, yp, zp) Eplot = build_interp_matrix( int_grid, np.column_stack((xp.ravel(), yp.ravel(), zp.ravel())), dx, p, ll, virtual_grid_shape) if PLOT: # Plotting code. Build a pipeline to be able to change the data later. src = mlab.pipeline.grid_source(xp, yp, zp, scalars=(Eplot * u).reshape(xp.shape)) normals = mlab.pipeline.poly_data_normals(src) surf = mlab.pipeline.surface(normals)