コード例 #1
0
ファイル: views.py プロジェクト: KidsXH/FLHeteroBackend
def cpca_cluster(request):
    if request.method == 'POST':
        request_data = json.loads(request.body)
        alpha = None
        if 'alpha' in request_data.keys():
            alpha = request_data['alpha']

        bg_data_idx = request_data['dataIndex']

        data = rs.state['data']

        homo_idx = rs.state['outputs_server'] == rs.state['outputs_client']

        bg = data[bg_data_idx]

        if bg.shape[0] == 1:
            return JsonResponse(rs.state['cpca_all_result'])

        fg = np.concatenate((data[homo_idx], bg))

        local_data, _ = load_samples(dataset=rs['dataset'],
                                     client_name=rs['client'],
                                     sampling_type='local')
        if USE_GPU:
            with torch.no_grad():
                cPCA = CPCA_GPU(n_components=2)
                cPCA.fit(target=fg, background=bg, alpha=alpha)
                projected_data = cPCA.transform(local_data)
                components = cPCA.get_components()
                alpha = cPCA.get_alpha()
        else:
            cPCA = CPCA(n_components=2)
            cPCA.fit(target=fg, background=bg, alpha=alpha)
            projected_data = cPCA.transform(local_data)
            components = cPCA.get_components()
            alpha = cPCA.get_alpha()

        projected_data = np.round(projected_data, 6).astype(float)
        components = np.round(components, 6).astype(float)
        alpha = np.round(alpha, 6).astype(float)

        data = {
            'alpha': alpha,
            'cPC1': components[0].tolist(),
            'cPC2': components[1].tolist(),
            'projectedData': projected_data.tolist(),
        }

        return JsonResponse(data)
コード例 #2
0
ファイル: views.py プロジェクト: KidsXH/FLHeteroBackend
def cpca_all(request):
    if request.method == 'POST':
        request_data = json.loads(request.body)
        alpha = None
        if 'alpha' in request_data.keys():
            alpha = request_data['alpha']

        data = rs.state['data']
        hetero_labels = rs.state['outputs_server'] != rs.state['outputs_client']

        if USE_GPU:
            with torch.no_grad():
                cPCA = CPCA_GPU(n_components=2)
                projected_data = cPCA.fit_transform(
                    target=data, background=data[hetero_labels], alpha=alpha)
                components = cPCA.get_components()
                alpha = cPCA.get_alpha()
        else:
            cPCA = CPCA(n_components=2)
            projected_data = cPCA.fit_transform(target=data,
                                                background=data[hetero_labels],
                                                alpha=alpha)
            components = cPCA.get_components()
            alpha = cPCA.get_alpha()

        projected_data = np.round(projected_data, 6).astype(float)
        components = np.round(components, 6).astype(float)
        alpha = np.round(alpha, 6).astype(float)

        data = {
            'alpha': alpha,
            'cPC1': components[0].tolist(),
            'cPC2': components[1].tolist(),
            'projectedData': projected_data.tolist(),
        }

        rs.set('cpca_all_result', data)

        return JsonResponse(data)
コード例 #3
0
import time

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, preprocessing

from cpca import CPCA
from ccpca import CCPCA

dataset = datasets.load_wine()

X = dataset.data
y = dataset.target
X = preprocessing.scale(X)

cpca = CPCA()

cpca.fit(fg=X[y == 0], bg=X[y != 0], alpha=2.15)
X_r = cpca.transform(X)

plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
lw = 2

for color, i, target_name in zip(colors, [0, 1, 2], [0, 1, 2]):
    plt.scatter(X_r[y == i, 0],
                X_r[y == i, 1],
                color=color,
                alpha=.8,
                lw=lw,
                label=target_name)
コード例 #4
0
ファイル: sample.py プロジェクト: wzpy/ccpca
import time

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, preprocessing

from cpca import CPCA
from ccpca import CCPCA

dataset = datasets.load_wine()

X = dataset.data
y = dataset.target
X = preprocessing.scale(X)

cpca = CPCA()

# manual alpha selection
# cpca.fit(fg=X[y == 0], bg=X[y != 0], alpha=2.15)

# auto alpha selection
cpca.fit(fg=X[y == 0], bg=X[y != 0])
X_r = cpca.transform(X)

plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
lw = 2

for color, i, target_name in zip(colors, [0, 1, 2], [0, 1, 2]):
    plt.scatter(X_r[y == i, 0],
                X_r[y == i, 1],
コード例 #5
0
ファイル: sample.py プロジェクト: takanori-fujiwara/cnrl
# Load data. Refer to http://www-personal.umich.edu/~mejn/netdata/ for the details of datasets
tg = gt.load_graph('./data/dolphin.xml.gz')
bg = gt.load_graph('./data/karate.xml.gz')

# Prepare network representation learning method
nrl = DeepGL(base_feat_defs=[
    'total_degree', 'betweenness', 'closeness', 'eigenvector', 'pagerank',
    'katz'
],
             rel_feat_ops=['mean', 'sum', 'maximum', 'lp_norm'],
             nbr_types=['all'],
             ego_dist=3,
             lambda_value=0.7)

# Prepare contrastive learning method
cl = CPCA()

# Set network representation and contrastive learning methods
# using DeepGL and cPCA is i-cNRL (interpretable cNRL)
cnrl = CNRL(nrl, cl)

# Learning
cnrl.fit(tg, bg)

# Obtain results for plotting
tg_feat_mat = preprocessing.scale(cnrl.tg_feat_mat)
bg_feat_mat = preprocessing.scale(cnrl.bg_feat_mat)
tg_emb = cnrl.transform(feat_mat=tg_feat_mat)
bg_emb = cnrl.transform(feat_mat=bg_feat_mat)

feat_defs = cnrl.feat_defs