コード例 #1
0
ファイル: dcgan.py プロジェクト: zwsong/nnabla
def train(args):
    """
    Main script.
    """

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    # TRAIN

    # Fake path
    z = nn.Variable([args.batch_size, 100, 1, 1])
    fake = generator(z)
    fake.persistent = True  # Not to clear at backward
    pred_fake = discriminator(fake)
    loss_gen = F.mean(F.sigmoid_cross_entropy(
        pred_fake, F.constant(1, pred_fake.shape)))
    fake_dis = fake.unlinked()
    pred_fake_dis = discriminator(fake_dis)
    loss_dis = F.mean(F.sigmoid_cross_entropy(
        pred_fake_dis, F.constant(0, pred_fake_dis.shape)))

    # Real path
    x = nn.Variable([args.batch_size, 1, 28, 28])
    pred_real = discriminator(x)
    loss_dis += F.mean(F.sigmoid_cross_entropy(pred_real,
                                               F.constant(1, pred_real.shape)))

    # Create Solver.
    solver_gen = S.Adam(args.learning_rate, beta1=0.5)
    solver_dis = S.Adam(args.learning_rate, beta1=0.5)
    with nn.parameter_scope("gen"):
        solver_gen.set_parameters(nn.get_parameters())
    with nn.parameter_scope("dis"):
        solver_dis.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss_gen = M.MonitorSeries("Generator loss", monitor, interval=10)
    monitor_loss_dis = M.MonitorSeries(
        "Discriminator loss", monitor, interval=10)
    monitor_time = M.MonitorTimeElapsed("Time", monitor, interval=100)
    monitor_fake = M.MonitorImageTile(
        "Fake images", monitor, normalize_method=lambda x: x + 1 / 2.)

    data = data_iterator_mnist(args.batch_size, True)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.model_save_interval == 0:
            with nn.parameter_scope("gen"):
                nn.save_parameters(os.path.join(
                    args.model_save_path, "generator_param_%06d.h5" % i))
            with nn.parameter_scope("dis"):
                nn.save_parameters(os.path.join(
                    args.model_save_path, "discriminator_param_%06d.h5" % i))

        # Training forward
        image, _ = data.next()
        x.d = image / 255. - 0.5  # [0, 255] to [-1, 1]
        z.d = np.random.randn(*z.shape)

        # Generator update.
        solver_gen.zero_grad()
        loss_gen.forward(clear_no_need_grad=True)
        loss_gen.backward(clear_buffer=True)
        solver_gen.weight_decay(args.weight_decay)
        solver_gen.update()
        monitor_fake.add(i, fake)
        monitor_loss_gen.add(i, loss_gen.d.copy())

        # Discriminator update.
        solver_dis.zero_grad()
        loss_dis.forward(clear_no_need_grad=True)
        loss_dis.backward(clear_buffer=True)
        solver_dis.weight_decay(args.weight_decay)
        solver_dis.update()
        monitor_loss_dis.add(i, loss_dis.d.copy())
        monitor_time.add(i)

    nnp = os.path.join(
        args.model_save_path, 'dcgan_%06d.nnp' % args.max_iter)
    runtime_contents = {
        'networks': [
            {'name': 'Generator',
             'batch_size': args.batch_size,
             'outputs': {'G': fake},
             'names': {'z': z}},
            {'name': 'Discriminator',
             'batch_size': args.batch_size,
             'outputs': {'D': pred_real},
             'names': {'x': x}}],
        'executors': [
            {'name': 'Generator',
             'network': 'Generator',
             'data': ['z'],
             'output': ['G']},
            {'name': 'Discriminator',
             'network': 'Discriminator',
             'data': ['x'],
             'output': ['D']}]}

    save.save(nnp, runtime_contents)
    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [z.d], [z], fake, nnp, "Generator")
コード例 #2
0
def main():
    """
    Main script.

    Steps:
    * Get and set context.
    * Load Dataset
    * Initialize DataIterator.
    * Create Networks
    *   Net for Labeled Data
    *   Net for Unlabeled Data
    *   Net for Test Data
    * Create Solver.
    * Training Loop.
    *   Test
    *   Training
    *     by Labeled Data
    *       Calculate Cross Entropy Loss 
    *     by Unlabeled Data
    *       Estimate Adversarial Direction
    *       Calculate LDS Loss
    """

    args = get_args()

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    shape_x = (1, 28, 28)
    n_h = args.n_units
    n_y = args.n_class

    # Load MNist Dataset
    from mnist_data import MnistDataSource
    with MnistDataSource(train=True) as d:
        x_t = d.images
        t_t = d.labels
    with MnistDataSource(train=False) as d:
        x_v = d.images
        t_v = d.labels
    x_t = np.array(x_t / 256.0).astype(np.float32)
    x_t, t_t = x_t[:args.n_train], t_t[:args.n_train]
    x_v, t_v = x_v[:args.n_valid], t_v[:args.n_valid]

    # Create Semi-supervised Datasets
    x_l, t_l, x_u, _ = split_dataset(x_t, t_t, args.n_labeled, args.n_class)
    x_u = np.r_[x_l, x_u]
    x_v = np.array(x_v / 256.0).astype(np.float32)

    # Create DataIterators for datasets of labeled, unlabeled and validation
    di_l = DataIterator(args.batchsize_l, [x_l, t_l])
    di_u = DataIterator(args.batchsize_u, [x_u])
    di_v = DataIterator(args.batchsize_v, [x_v, t_v])

    # Create networks
    # feed-forward-net building function
    def forward(x, test=False):
        return mlp_net(x, n_h, n_y, test)

    # Net for learning labeled data
    xl = nn.Variable((args.batchsize_l,) + shape_x, need_grad=False)
    hl = forward(xl, test=False)
    tl = nn.Variable((args.batchsize_l, 1), need_grad=False)
    loss_l = F.mean(F.softmax_cross_entropy(hl, tl))

    # Net for learning unlabeled data
    xu = nn.Variable((args.batchsize_u,) + shape_x, need_grad=False)
    r = nn.Variable((args.batchsize_u,) + shape_x, need_grad=True)
    eps = nn.Variable((args.batchsize_u,) + shape_x, need_grad=False)
    loss_u, yu = vat(xu, r, eps, forward, distance)

    # Net for evaluating valiation data
    xv = nn.Variable((args.batchsize_v,) + shape_x, need_grad=False)
    hv = forward(xv, test=True)
    tv = nn.Variable((args.batchsize_v, 1), need_grad=False)

    # Create solver
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Monitor trainig and validation stats.
    import nnabla.monitor as M
    monitor = M.Monitor(args.model_save_path)
    monitor_verr = M.MonitorSeries("Test error", monitor, interval=240)
    monitor_time = M.MonitorTimeElapsed("Elapsed time", monitor, interval=240)

    # Training Loop.
    t0 = time.time()

    for i in range(args.max_iter):

        # Validation Test
        if i % args.val_interval == 0:
            n_error = calc_validation_error(
                di_v, xv, tv, hv, args.val_iter)
            monitor_verr.add(i, n_error)

        #################################
        ## Training by Labeled Data #####
        #################################

        # input minibatch of labeled data into variables
        xl.d, tl.d = di_l.next()

        # initialize gradients
        solver.zero_grad()

        # forward, backward and update
        loss_l.forward(clear_no_need_grad=True)
        loss_l.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()

        #################################
        ## Training by Unlabeled Data ###
        #################################

        # input minibatch of unlabeled data into variables
        xu.d, = di_u.next()

        ##### Calculate Adversarial Noise #####

        # Sample random noise
        n = np.random.normal(size=xu.shape).astype(np.float32)

        # Normalize noise vector and input to variable
        r.d = get_direction(n)

        # Set xi, the power-method scaling parameter.
        eps.data.fill(args.xi_for_vat)

        # Calculate y without noise, only once.
        yu.forward(clear_buffer=True)

        # Do power method iteration
        for k in range(args.n_iter_for_power_method):
            # Initialize gradient to receive value
            r.grad.zero()

            # forward, backward, without update
            loss_u.forward(clear_no_need_grad=True)
            loss_u.backward(clear_buffer=True)

            # Normalize gradinet vector and input to variable
            r.d = get_direction(r.g)

        ##### Calculate loss for unlabeled data #####

        # Clear remained gradients
        solver.zero_grad()

        # Set epsilon, the adversarial noise scaling parameter.
        eps.data.fill(args.eps_for_vat)

        # forward, backward and update
        loss_u.forward(clear_no_need_grad=True)
        loss_u.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()

        ##### Learning rate update #####
        if i % args.iter_per_epoch == 0:
            solver.set_learning_rate(
                solver.learning_rate() * args.learning_rate_decay)
        monitor_time.add(i)

    # Evaluate the final model by the error rate with validation dataset
    valid_error = calc_validation_error(di_v, xv, tv, hv, args.val_iter)
    monitor_verr.add(i, valid_error)
    monitor_time.add(i)

    # Save the model.
    nnp_file = os.path.join(
        args.model_save_path, 'vat_%06d.nnp' % args.max_iter)
    runtime_contents = {
        'networks': [
            {'name': 'Validation',
             'batch_size': args.batchsize_v,
             'outputs': {'y': hv},
             'names': {'x': xv}}],
        'executors': [
            {'name': 'Runtime',
             'network': 'Validation',
             'data': ['x'],
             'output': ['y']}]}
    save.save(nnp_file, runtime_contents)

    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [xv.d], [xv], hv, nnp_file)
コード例 #3
0
def train():
    """
    Main script.

    Steps:

    * Parse command line arguments.
    * Specify a context for computation.
    * Initialize DataIterator for MNIST.
    * Construct a computation graph for training and validation.
    * Initialize a solver and set parameter variables to it.
    * Create monitor instances for saving and displaying training stats.
    * Training loop
      * Computate error rate for validation data (periodically)
      * Get a next minibatch.
      * Execute forwardprop on the training graph.
      * Compute training error
      * Set parameter gradients zero
      * Execute backprop.
      * Solver updates parameters by using gradients computed by backprop.
    """
    args = get_args()

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    mnist_cnn_prediction = mnist_lenet_prediction
    if args.net == 'resnet':
        mnist_cnn_prediction = mnist_resnet_prediction

    # TRAIN
    # Create input variables.
    image = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size, 1])
    # Create prediction graph.
    pred = mnist_cnn_prediction(image, test=False)
    pred.persistent = True
    # Create loss function.
    loss = F.mean(F.softmax_cross_entropy(pred, label))

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create predition graph.
    vpred = mnist_cnn_prediction(vimage, test=True)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = MonitorSeries("Training error", monitor, interval=10)
    monitor_time = MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    data = data_iterator_mnist(args.batch_size, True)
    vdata = data_iterator_mnist(args.batch_size, False)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=True)
                ve += categorical_error(vpred.d, vlabel.d)
            monitor_verr.add(i, ve / args.val_iter)
        if i % args.model_save_interval == 0:
            nn.save_parameters(
                os.path.join(args.model_save_path, 'params_%06d.h5' % i))
        # Training forward
        image.d, label.d = data.next()
        #image.d /= 255.0
        solver.zero_grad()
        loss.forward(clear_no_need_grad=True)
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    ve = 0.0
    for j in range(args.val_iter):
        vimage.d, vlabel.d = vdata.next()
        vpred.forward(clear_buffer=True)
        ve += categorical_error(vpred.d, vlabel.d)
    monitor_verr.add(i, ve / args.val_iter)

    nnp_file = os.path.join(args.model_save_path,
                            '{}_{:06}.nnp'.format(args.net, args.max_iter))
    runtime_contents = {
        'networks': [{
            'name': 'Validation',
            'batch_size': args.batch_size,
            'outputs': {
                'y': vpred
            },
            'names': {
                'x': vimage
            }
        }],
        'executors': [{
            'name': 'Runtime',
            'network': 'Validation',
            'data': ['x'],
            'output': ['y']
        }]
    }
    save.save(nnp_file, runtime_contents)

    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [vimage.d], [vimage], vpred,
                      nnp_file)
コード例 #4
0
ファイル: siamese.py プロジェクト: zwsong/nnabla
def train(args):
    """
    Main script.
    """

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    margin = 1.0  # Margin for contrastive loss.

    # TRAIN
    # Create input variables.
    image0 = nn.Variable([args.batch_size, 1, 28, 28])
    image1 = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size])
    # Create predition graph.
    pred = mnist_lenet_siamese(image0, image1, test=False)
    # Create loss function.
    loss = F.mean(contrastive_loss(pred, label, margin))

    # TEST
    # Create input variables.
    vimage0 = nn.Variable([args.batch_size, 1, 28, 28])
    vimage1 = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size])
    # Create predition graph.
    vpred = mnist_lenet_siamese(vimage0, vimage1, test=True)
    vloss = F.mean(contrastive_loss(vpred, vlabel, margin))

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss = M.MonitorSeries("Training loss", monitor, interval=10)
    monitor_time = M.MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_vloss = M.MonitorSeries("Test loss", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    rng = np.random.RandomState(313)
    data = siamese_data_iterator(args.batch_size, True, rng)
    vdata = siamese_data_iterator(args.batch_size, False, rng)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage0.d, vimage1.d, vlabel.d = vdata.next()
                vloss.forward(clear_buffer=True)
                ve += vloss.d
            monitor_vloss.add(i, ve / args.val_iter)
        if i % args.model_save_interval == 0:
            nn.save_parameters(os.path.join(
                args.model_save_path, 'params_%06d.h5' % i))
        image0.d, image1.d, label.d = data.next()
        solver.zero_grad()
        # Training forward, backward and update
        loss.forward(clear_no_need_grad=True)
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        monitor_loss.add(i, loss.d.copy())
        monitor_time.add(i)

    parameter_file = os.path.join(
        args.model_save_path, 'params_%06d.h5' % args.max_iter)
    nn.save_parameters(parameter_file)

    nnp_file = os.path.join(
        args.model_save_path, 'siamese_%06d.nnp' % (args.max_iter))
    runtime_contents = {
        'networks': [
            {'name': 'Validation',
             'batch_size': args.batch_size,
             'outputs': {'y': vpred},
             'names': {'x0': vimage0, 'x1': vimage1}}],
        'executors': [
            {'name': 'Runtime',
             'network': 'Validation',
             'data': ['x0', 'x1'],
             'output': ['y']}]}
    save.save(nnp_file, runtime_contents)

    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [vimage0.d, vimage1.d], [
                      vimage0, vimage1], vpred, nnp_file)
コード例 #5
0
ファイル: classification_bnn.py プロジェクト: zwsong/nnabla
def train():
    """
    Main script.

    Steps:

    * Parse command line arguments.
    * Specify a context for computation.
    * Initialize DataIterator for MNIST.
    * Construct a computation graph for training and validation.
    * Initialize a solver and set parameter variables to it.
    * Create monitor instances for saving and displaying training stats.
    * Training loop
      * Computate error rate for validation data (periodically)
      * Get a next minibatch.
      * Set parameter gradients zero
      * Execute forwardprop on the training graph.
      * Execute backprop.
      * Solver updates parameters by using gradients computed by backprop.
      * Compute training error
    """
    args = get_args(monitor_path='tmp.monitor.bnn')

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Initialize DataIterator for MNIST.
    data = data_iterator_mnist(args.batch_size, True)
    vdata = data_iterator_mnist(args.batch_size, False)

    # Create CNN network for both training and testing.
    mnist_cnn_prediction = mnist_binary_connect_lenet_prediction
    if args.net == 'bincon':
        mnist_cnn_prediction = mnist_binary_connect_lenet_prediction
    elif args.net == 'binnet':
        mnist_cnn_prediction = mnist_binary_net_lenet_prediction
    elif args.net == 'bwn':
        mnist_cnn_prediction = mnist_binary_weight_lenet_prediction
    elif args.net == 'bincon_resnet':
        mnist_cnn_prediction = mnist_binary_connect_resnet_prediction
    elif args.net == 'binnet_resnet':
        mnist_cnn_prediction = mnist_binary_net_resnet_prediction
    elif args.net == 'bwn_resnet':
        mnist_cnn_prediction = mnist_binary_weight_resnet_prediction

    # TRAIN
    # Create input variables.
    image = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size, 1])
    # Create predition graph.
    pred = mnist_cnn_prediction(image / 255, test=False)
    pred.persistent = True
    # Create loss function.
    loss = F.mean(F.softmax_cross_entropy(pred, label))

    # TEST
    # Create input variables.
    vimage = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size, 1])
    # Create predition graph.
    vpred = mnist_cnn_prediction(vimage / 255, test=True)

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss = M.MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = M.MonitorSeries("Training error", monitor, interval=10)
    monitor_time = M.MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_verr = M.MonitorSeries("Test error", monitor, interval=10)

    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage.d, vlabel.d = vdata.next()
                vpred.forward(clear_buffer=True)
                ve += categorical_error(vpred.d, vlabel.d)
            monitor_verr.add(i, ve / args.val_iter)
        if i % args.model_save_interval == 0:
            nn.save_parameters(os.path.join(
                args.model_save_path, 'params_%06d.h5' % i))
        # Training forward
        image.d, label.d = data.next()
        solver.zero_grad()
        loss.forward(clear_no_need_grad=True)
        # Training backward & update
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        # Monitor
        e = categorical_error(pred.d, label.d)
        monitor_loss.add(i, loss.d.copy())
        monitor_err.add(i, e)
        monitor_time.add(i)

    nnp_file = os.path.join(
        args.model_save_path, '{}_{:06}.nnp'.format(args.net, args.max_iter))
    runtime_contents = {
        'networks': [
            {'name': 'Validation',
             'batch_size': args.batch_size,
             'outputs': {'y': vpred},
             'names': {'x': vimage}}],
        'executors': [
            {'name': 'Runtime',
             'network': 'Validation',
             'data': ['x'],
             'output': ['y']}]}
    save.save(nnp_file, runtime_contents)

    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [vimage.d], [
                      vimage], vpred, nnp_file)
コード例 #6
0
def train(args):
    """
    Main script.
    """

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    # TRAIN

    # Fake path
    z = nn.Variable([args.batch_size, 100, 1, 1])
    fake = generator(z)
    fake.persistent = True  # Not to clear at backward
    pred_fake = discriminator(fake)
    loss_gen = F.mean(
        F.sigmoid_cross_entropy(pred_fake, F.constant(1, pred_fake.shape)))
    fake_dis = fake.unlinked()
    pred_fake_dis = discriminator(fake_dis)
    loss_dis = F.mean(
        F.sigmoid_cross_entropy(pred_fake_dis,
                                F.constant(0, pred_fake_dis.shape)))

    # Real path
    x = nn.Variable([args.batch_size, 1, 28, 28])
    pred_real = discriminator(x)
    loss_dis += F.mean(
        F.sigmoid_cross_entropy(pred_real, F.constant(1, pred_real.shape)))

    # Create Solver.
    solver_gen = S.Adam(args.learning_rate, beta1=0.5)
    solver_dis = S.Adam(args.learning_rate, beta1=0.5)
    with nn.parameter_scope("gen"):
        solver_gen.set_parameters(nn.get_parameters())
    with nn.parameter_scope("dis"):
        solver_dis.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss_gen = M.MonitorSeries("Generator loss", monitor, interval=10)
    monitor_loss_dis = M.MonitorSeries("Discriminator loss",
                                       monitor,
                                       interval=10)
    monitor_time = M.MonitorTimeElapsed("Time", monitor, interval=100)
    monitor_fake = M.MonitorImageTile("Fake images",
                                      monitor,
                                      normalize_method=lambda x: x + 1 / 2.)

    data = data_iterator_mnist(args.batch_size, True)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.model_save_interval == 0:
            with nn.parameter_scope("gen"):
                nn.save_parameters(
                    os.path.join(args.model_save_path,
                                 "generator_param_%06d.h5" % i))
            with nn.parameter_scope("dis"):
                nn.save_parameters(
                    os.path.join(args.model_save_path,
                                 "discriminator_param_%06d.h5" % i))

        # Training forward
        image, _ = data.next()
        x.d = image / 255. - 0.5  # [0, 255] to [-1, 1]
        z.d = np.random.randn(*z.shape)

        # Generator update.
        solver_gen.zero_grad()
        loss_gen.forward(clear_no_need_grad=True)
        loss_gen.backward(clear_buffer=True)
        solver_gen.weight_decay(args.weight_decay)
        solver_gen.update()
        monitor_fake.add(i, fake)
        monitor_loss_gen.add(i, loss_gen.d.copy())

        # Discriminator update.
        solver_dis.zero_grad()
        loss_dis.forward(clear_no_need_grad=True)
        loss_dis.backward(clear_buffer=True)
        solver_dis.weight_decay(args.weight_decay)
        solver_dis.update()
        monitor_loss_dis.add(i, loss_dis.d.copy())
        monitor_time.add(i)

    nnp = os.path.join(args.model_save_path, 'dcgan_%06d.nnp' % args.max_iter)
    runtime_contents = {
        'networks': [{
            'name': 'Generator',
            'batch_size': args.batch_size,
            'outputs': {
                'G': fake
            },
            'names': {
                'z': z
            }
        }, {
            'name': 'Discriminator',
            'batch_size': args.batch_size,
            'outputs': {
                'D': pred_real
            },
            'names': {
                'x': x
            }
        }],
        'executors': [{
            'name': 'Generator',
            'network': 'Generator',
            'data': ['z'],
            'output': ['G']
        }, {
            'name': 'Discriminator',
            'network': 'Discriminator',
            'data': ['x'],
            'output': ['D']
        }]
    }

    save.save(nnp, runtime_contents)
    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [z.d], [z], fake, nnp, "Generator")
コード例 #7
0
def main():

    # Get arguments
    args = get_args()
    data_file = "https://raw.githubusercontent.com/tomsercu/lstm/master/data/ptb.train.txt"
    model_file = args.work_dir + "model.h5"

    # Load Dataset
    itow, wtoi, dataset = load_ptbset(data_file)

    # Computation environment settings
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create data provider
    n_word = len(wtoi)
    n_dim = args.embed_dim
    batchsize = args.batchsize
    half_window = args.half_window_length
    n_negative = args.n_negative_sample

    di = DataIteratorForEmbeddingLearning(
        batchsize=batchsize,
        half_window=half_window,
        n_negative=n_negative,
        dataset=dataset)

    # Create model
    # - Real batch size including context samples and negative samples
    size = batchsize * (1 + n_negative) * (2 * (half_window - 1))

    # Model for learning
    # - input variables
    xl = nn.Variable((size,))  # variable for word
    yl = nn.Variable((size,))  # variable for context

    # Embed layers for word embedding function
    # - f_embed : word index x to get y, the n_dim vector
    # --  for each sample in a minibatch
    hx = PF.embed(xl, n_word, n_dim, name="e1")  # feature vector for word
    hy = PF.embed(yl, n_word, n_dim, name="e1")  # feature vector for context
    hl = F.sum(hx * hy, axis=1)

    # -- Approximated likelihood of context prediction
    # pos: word context, neg negative samples
    tl = nn.Variable([size, ], need_grad=False)
    loss = F.sigmoid_cross_entropy(hl, tl)
    loss = F.mean(loss)

    # Model for test of searching similar words
    xr = nn.Variable((size,), need_grad=False)
    hr = PF.embed(xr, n_word, n_dim, name="e1")  # feature vector for test

    # Create solver
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    monitor = M.Monitor(args.work_dir)
    monitor_loss = M.MonitorSeries(
        "Training loss", monitor, interval=args.monitor_interval)
    monitor_time = M.MonitorTimeElapsed(
        "Training time", monitor, interval=args.monitor_interval)

    # Do training
    max_epoch = args.max_epoch
    for epoch in range(max_epoch):

        # iteration per epoch
        for i in range(di.n_batch):

            # get minibatch
            xi, yi, ti = di.next()

            # learn
            solver.zero_grad()
            xl.d, yl.d, tl.d = xi, yi, ti
            loss.forward(clear_no_need_grad=True)
            loss.backward(clear_buffer=True)
            solver.update()

            # monitor
            itr = epoch * di.n_batch + i
            monitor_loss.add(itr, loss.d)
            monitor_time.add(itr)

    # Save model
    nn.save_parameters(model_file)
    nnp_file = os.path.join(
        args.work_dir, 'wtov_%06d.nnp' % (args.max_epoch))
    runtime_contents = {
        'networks': [
            {'name': 'Validation',
             'batch_size': size,
             'outputs': {'e': hr},
             'names': {'w': xr}}],
        'executors': [
            {'name': 'Runtime',
             'network': 'Validation',
             'data': ['w'],
             'output': ['e']}]}
    save.save(nnp_file, runtime_contents)

    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.work_dir, [xi], [xr], hr, nnp_file)
    exit()

    # Evaluate by similarity
    max_check_words = args.max_check_words
    for i in range(max_check_words):

        # prediction
        xr.d = i
        hr.forward(clear_buffer=True)
        h = hr.d

        # similarity calculation
        w = nn.get_parameters()['e1/embed/W'].d
        s = np.sqrt((w * w).sum(1))
        w /= s.reshape((s.shape[0], 1))
        similarity = w.dot(h[0]) / s[i]

        # for understanding
        output_similar_words(itow, i, similarity)
コード例 #8
0
def train():
    """
    Main script.
    """

    args = get_args()

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Dataset
    # We use Tiny ImageNet from Stanford CS231N class.
    # https://tiny-imagenet.herokuapp.com/
    # Tiny ImageNet consists of 200 categories, each category has 500 images
    # in training set. The image size is 64x64. To adapt ResNet into 64x64
    # image inputs, the input image size of ResNet is set as 56x56, and
    # the stride in the first conv and the first max pooling are removed.
    data = data_iterator_tiny_imagenet(args.batch_size, 'train')
    vdata = data_iterator_tiny_imagenet(args.batch_size, 'val')

    num_classes = 200
    tiny = True  # TODO: Switch ILSVRC2012 dataset and TinyImageNet.
    t_model = get_model(
        args, num_classes, test=False, tiny=tiny)
    t_model.pred.persistent = True  # Not clearing buffer of pred in backward
    v_model = get_model(
        args, num_classes, test=True, tiny=tiny)
    v_model.pred.persistent = True  # Not clearing buffer of pred in forward

    # Create Solver.
    solver = S.Momentum(args.learning_rate, 0.9)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss = M.MonitorSeries("Training loss", monitor, interval=10)
    monitor_err = M.MonitorSeries("Training error", monitor, interval=10)
    monitor_vloss = M.MonitorSeries("Validation loss", monitor, interval=10)
    monitor_verr = M.MonitorSeries("Validation error", monitor, interval=10)
    monitor_time = M.MonitorTimeElapsed("Training time", monitor, interval=10)

    # Training loop.
    for i in range(args.max_iter):
        # Save parameters
        if i % args.model_save_interval == 0:
            nn.save_parameters(os.path.join(
                args.model_save_path, 'param_%06d.h5' % i))

        # Validation
        if i % args.val_interval == 0:

            # Clear all intermediate memory to save memory.
            # t_model.loss.clear_recursive()

            l = 0.0
            e = 0.0
            for j in range(args.val_iter):
                images, labels = vdata.next()
                v_model.image.d = images
                v_model.label.d = labels
                v_model.image.data.cast(np.uint8, ctx)
                v_model.label.data.cast(np.int32, ctx)
                v_model.loss.forward(clear_buffer=True)
                l += v_model.loss.d
                e += categorical_error(v_model.pred.d, v_model.label.d)
            monitor_vloss.add(i, l / args.val_iter)
            monitor_verr.add(i, e / args.val_iter)

            # Clear all intermediate memory to save memory.
            # v_model.loss.clear_recursive()

        # Training
        l = 0.0
        e = 0.0
        solver.zero_grad()

        # Gradient accumulation loop
        for j in range(args.accum_grad):
            images, labels = data.next()
            t_model.image.d = images
            t_model.label.d = labels
            t_model.image.data.cast(np.uint8, ctx)
            t_model.label.data.cast(np.int32, ctx)
            t_model.loss.forward(clear_no_need_grad=True)
            t_model.loss.backward(clear_buffer=True)  # Accumulating gradients
            l += t_model.loss.d
            e += categorical_error(t_model.pred.d, t_model.label.d)
        solver.weight_decay(args.weight_decay)
        solver.update()
        monitor_loss.add(i, l / args.accum_grad)
        monitor_err.add(i, e / args.accum_grad)
        monitor_time.add(i)

        # Learning rate decay at scheduled iter
        if i in args.learning_rate_decay_at:
            solver.set_learning_rate(solver.learning_rate() * 0.1)
    nn.save_parameters(os.path.join(args.model_save_path,
                                    'param_%06d.h5' % args.max_iter))

    nnp_file = os.path.join(
        args.model_save_path, 'resnet_%06d.nnp' % (args.max_iter))
    runtime_contents = {
        'networks': [
            {'name': 'Validation',
             'batch_size': v_model.pred.shape[0],
             'outputs': {'y': v_model.pred},
             'names': {'x': v_model.image}}],
        'executors': [
            {'name': 'Runtime',
             'network': 'Validation',
             'data': ['x'],
             'output': ['y']}]}
    save.save(nnp_file, runtime_contents)

    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [v_model.image.d], [
                      v_model.image], v_model.pred, nnp_file)
コード例 #9
0
ファイル: siamese.py プロジェクト: stevevista/nbla-go-zero
def train(args):
    """
    Main script.
    """

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    # Create CNN network for both training and testing.
    margin = 1.0  # Margin for contrastive loss.

    # TRAIN
    # Create input variables.
    image0 = nn.Variable([args.batch_size, 1, 28, 28])
    image1 = nn.Variable([args.batch_size, 1, 28, 28])
    label = nn.Variable([args.batch_size])
    # Create predition graph.
    pred = mnist_lenet_siamese(image0, image1, test=False)
    # Create loss function.
    loss = F.mean(contrastive_loss(pred, label, margin))

    # TEST
    # Create input variables.
    vimage0 = nn.Variable([args.batch_size, 1, 28, 28])
    vimage1 = nn.Variable([args.batch_size, 1, 28, 28])
    vlabel = nn.Variable([args.batch_size])
    # Create predition graph.
    vpred = mnist_lenet_siamese(vimage0, vimage1, test=True)
    vloss = F.mean(contrastive_loss(vpred, vlabel, margin))

    # Create Solver.
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Create monitor.
    import nnabla.monitor as M
    monitor = M.Monitor(args.monitor_path)
    monitor_loss = M.MonitorSeries("Training loss", monitor, interval=10)
    monitor_time = M.MonitorTimeElapsed("Training time", monitor, interval=100)
    monitor_vloss = M.MonitorSeries("Test loss", monitor, interval=10)

    # Initialize DataIterator for MNIST.
    rng = np.random.RandomState(313)
    data = siamese_data_iterator(args.batch_size, True, rng)
    vdata = siamese_data_iterator(args.batch_size, False, rng)
    # Training loop.
    for i in range(args.max_iter):
        if i % args.val_interval == 0:
            # Validation
            ve = 0.0
            for j in range(args.val_iter):
                vimage0.d, vimage1.d, vlabel.d = vdata.next()
                vloss.forward(clear_buffer=True)
                ve += vloss.d
            monitor_vloss.add(i, ve / args.val_iter)
        if i % args.model_save_interval == 0:
            nn.save_parameters(
                os.path.join(args.model_save_path, 'params_%06d.h5' % i))
        image0.d, image1.d, label.d = data.next()
        solver.zero_grad()
        # Training forward, backward and update
        loss.forward(clear_no_need_grad=True)
        loss.backward(clear_buffer=True)
        solver.weight_decay(args.weight_decay)
        solver.update()
        monitor_loss.add(i, loss.d.copy())
        monitor_time.add(i)

    parameter_file = os.path.join(args.model_save_path,
                                  'params_%06d.h5' % args.max_iter)
    nn.save_parameters(parameter_file)

    nnp_file = os.path.join(args.model_save_path,
                            'siamese_%06d.nnp' % (args.max_iter))
    runtime_contents = {
        'networks': [{
            'name': 'Validation',
            'batch_size': args.batch_size,
            'outputs': {
                'y': vpred
            },
            'names': {
                'x0': vimage0,
                'x1': vimage1
            }
        }],
        'executors': [{
            'name': 'Runtime',
            'network': 'Validation',
            'data': ['x0', 'x1'],
            'output': ['y']
        }]
    }
    save.save(nnp_file, runtime_contents)

    from cpp_forward_check import check_cpp_forward
    check_cpp_forward(args.model_save_path, [vimage0.d, vimage1.d],
                      [vimage0, vimage1], vpred, nnp_file)