def test_exponential_model_update(): model = ExponentialModel(shape=0.001, rate=0.001) data = np.array([0.4692680, 3.0101214, 1.3167456, 0.9129425, 0.1696248]) model.update(data) assert model.n_samples_ == 5
def test_poisson_ab_check_models(): modelA = PoissonModel(shape=25, rate=1000) modelB = ExponentialModel(shape=25, rate=1000) with raises(TypeError): PoissonABTest(modelA=modelA, modelB=modelB)
def test_exponential_mv_check_model_input(): modelA = ExponentialModel(shape=25, rate=1000) modelB = ExponentialModel(shape=25, rate=1000) with raises(TypeError): ExponentialMVTest(models=[modelA, modelB])
def test_exponential_model_mean_var(): model = ExponentialModel(shape=0.001, rate=0.001) assert np.isnan(model.ppmean()) assert np.isnan(model.ppvar())
def test_exponential_model_stats(): model = ExponentialModel(shape=25, rate=1000) assert model.ppmean() == approx(41.66666666) assert model.ppvar() == approx(1887.077294)
def test_exponential_model_pppdf_x(): model = ExponentialModel(shape=25, rate=1000) assert model.pppdf([-1, 0, 20, 100]) == approx([0, 0.025, 0.0149394821, 0.0020976363])