コード例 #1
0
ファイル: fits_files.py プロジェクト: Physarah/craftutils
def fits_table_all(input_path: str,
                   output_path: str = "",
                   science_only: bool = True):
    """
    Produces and writes to disk a table of .fits files in the given path, with the vital statistics of each. Intended
    only for use with raw ESO data.
    :param input_path:
    :param output_path:
    :param science_only: If True, we are writing a list for a folder that also contains calibration files, which we want
     to ignore.
    :return:
    """

    # If there's no trailing slash in the paths, add one.
    u.check_trailing_slash(output_path)

    if output_path == "":
        output_path = input_path + "fits_table.csv"
    elif output_path[-4:] != ".csv":
        if output_path[-1] == "/":
            output_path = output_path + "fits_table.csv"
        else:
            output_path = output_path + ".csv"

    print('Writing table of fits files to: \n', output_path)

    files = os.listdir(input_path)
    files.sort()
    files_fits = list(filter(lambda x: x[-5:] == '.fits', files))

    # Create list of dictionaries to be used as the output data
    output = []

    ids = string.ascii_lowercase
    if len(ids) < len(files_fits):
        ids = ids + string.ascii_uppercase
    if len(ids) < len(files_fits):
        ids = ids + string.digits

    for i, f in enumerate(files_fits):
        data = {}
        file = fits.open(input_path + f)
        header = file[0].header
        for key in header:
            data[key] = header[key]
        if 'ESO TEL AIRM END' in data and 'ESO TEL AIRM START' in data:
            data['AIRMASS'] = (float(data['ESO TEL AIRM END']) +
                               float(data['ESO TEL AIRM START'])) / 2
        if science_only and 'SCIENCE' in data['ESO DPR CATG']:
            output.append(data)
        elif not science_only:
            output.append(data)
        file.close()

    output.sort(key=lambda a: a['ARCFILE'])

    out_file = pd.DataFrame(output)
    out_file.to_csv(output_path)

    return out_file
コード例 #2
0
def check_for_config():
    u.mkdir_check(config_dir)
    p = load_params(config_file)
    if p is None:
        config_text = pkg_resources.resource_string(
            __name__, os.path.join("..", f"param",
                                   "config_template.yaml")).decode()
        print(type(config_text))
        config_text = config_text.replace(
            "proj_dir: <some_directory>/craft-optical-followup/",
            f"proj_dir: {os.getcwd()}/")

        with open(config_file, "w") as cfg:
            cfg.write(config_text)

        print(f"No config file was detected at {config_file}.")
        print(f"A fresh config file has been created at '{config_file}'")
        print(
            "In this file, please set 'top_data_dir' to a valid path in which to store all "
            "data products of this package (This may require a large amount of space.)."
        )
        print("You may also like to specify an alternate param_dir")

        input("\nOnce you have edited this file, press any key to proceed.")
        p = load_params(config_file)
    else:
        for param in p:
            p[param] = u.check_trailing_slash(p[param])
        save_params(config_file, p)
        yaml_to_json(config_file)
    return p
コード例 #3
0
def main(path):
    print(f"\nExecuting Python script plot_fwhms.py, with path {path}\n")
    path = check_trailing_slash(path)
    outputs = p.tabulate_output_values(path=path, output=path + "output_values.csv")
    plt.plot(range(len(outputs)), outputs["_fwhm_arcsec"])
    plt.ylabel("FWHM")
    plt.xlabel("Frame")
    plt.title(f"FWHM in {path}")
    plt.savefig(path + "fwhm.png")
コード例 #4
0
ファイル: params.py プロジェクト: Physarah/craftutils
def check_for_config():
    p = load_params('param/config.yaml')
    if p is None:
        print("No config.yaml file found.")
    else:
        for param in p:
            p[param] = u.check_trailing_slash(p[param])
        save_params('param/config.yaml', p)
        yaml_to_json('param/config.yaml')
    return p
コード例 #5
0
ファイル: params.py プロジェクト: Physarah/craftutils
def tabulate_output_values(path: str, output: str = None):
    path = u.check_trailing_slash(path=path)
    outputs = []
    for file in filter(lambda filename: 'output_values.yaml' in filename,
                       os.listdir(path)):
        output_values = load_params(file=path + file)
        output_values["filename"] = file
        outputs.append(output_values)

    outputs = tbl.Table(outputs)

    if output is not None:
        output = u.sanitise_file_ext(filename=output, ext='.csv')
        outputs.write(output)
        outputs.sort(keys="filename")

    return outputs
コード例 #6
0
def main(data_dir, data_title, origin, destination, all_synths):
    print("\nExecuting Python script pipeline_fors2/5-background_subtract.py, with:")
    print(f"\tepoch {data_title}")
    print(f"\torigin directory {origin}")
    print(f"\tdestination directory {destination}")
    print()

    methods = ["ESO backgrounds only", "SExtractor backgrounds only", "polynomial fit", "Gaussian fit", "median value"]

    if all_synths:
        frame = 56
        method = "polynomial fit"
        degree = 5
        do_mask = True
        local = True
        global_sub = False
        trim_image = False
        recorrect_subbed = True
        eso_back = False

    else:
        frame = 200
        # frame_arcsec = 30 * units.arcsec
        # frame_deg = frame_arcsec.to(units.deg)

        eso_back = False

        _, method = u.select_option(message="Please select the background subtraction method.", options=methods,
                                 default="polynomial fit")
        degree = None
        if method == "polynomial fit":
            degree = u.user_input(message=f"Please enter the degree of {method} to use:", typ=int, default=3)
        elif method == "ESO backgrounds only":
            eso_back = True
        do_mask = False
        if method not in ["ESO backgrounds only", "SExtractor backgrounds only", "median value"]:
            do_mask = u.select_yn(message="Mask sources using SExtractor catalogue?", default=True)
        if method in ["polynomial fit", "Gaussian fit"]:
            local = u.select_yn(message="Use a local fit?", default=True)
        else:
            local = False
        global_sub = False
        trim_image = False
        recorrect_subbed = False
        if local:
            global_sub = u.select_yn(message="Subtract local fit from entire image?", default="n")
            if not global_sub:
                trim_image = u.select_yn(message="Trim images to subtracted region?", default="y")
                recorrect_subbed = u.select_yn(message="Re-normalise background of subtracted region?", default="y")

        # if not eso_back and method != "SExtractor backgrounds only":
        #     eso_back = u.select_yn(message="Subtract ESO Reflex fitted backgrounds first?", default=False)

    outputs = p.object_output_params(data_title, instrument='FORS2')

    data_dir = u.check_trailing_slash(data_dir)

    destination = u.check_trailing_slash(destination)
    destination = data_dir + destination
    u.mkdir_check_nested(destination)

    origin = u.check_trailing_slash(origin)
    science_origin = data_dir + origin + "science/"
    print(science_origin)

    filters = outputs['filters']
    frb_params = p.object_params_frb(obj=data_title[:-2])
    epoch_params = p.object_params_fors2(obj=data_title)

    background_origin_eso = ""
    if eso_back:
        background_origin_eso = data_dir + "/" + origin + "/backgrounds/"

    if method == "SExtractor backgrounds only":
        background_origin = f"{data_dir}{origin}backgrounds_sextractor/"
    elif method == "polynomial fit":
        background_origin = f"{destination}backgrounds/"  # f"{destination}backgrounds_{method.replace(' ', '')}_degree_{degree}_local_{local}_globalsub_{global_sub}/"
    else:
        background_origin = f"{destination}backgrounds/"  # f"{destination}backgrounds_{method.replace(' ', '')}_local_{local}_globalsub_{global_sub}/"

    trimmed_path = ""
    if trim_image:
        trimmed_path = f"{data_dir}{origin}trimmed_to_background/"
        u.mkdir_check_nested(trimmed_path)

    ra = frb_params["burst_ra"]
    dec = frb_params["burst_dec"]

    if all_synths:
        ras = epoch_params["test_synths"]["ra"]
        decs = epoch_params["test_synths"]["dec"]
    else:
        ras = [ra]
        decs = [dec]

    for fil in filters:
        trimmed_path_fil = ""
        if trim_image:
            trimmed_path_fil = f"{trimmed_path}{fil}/"
            u.mkdir_check(trimmed_path_fil)
        background_fil_dir = f"{background_origin}{fil}/"
        u.mkdir_check_nested(background_fil_dir)
        science_destination_fil = f"{destination}science/{fil}/"
        u.mkdir_check_nested(science_destination_fil)
        files = os.listdir(science_origin + fil + "/")
        for file_name in files:
            if file_name.endswith('.fits'):
                new_file = file_name.replace("norm", "bg_sub")
                new_path = f"{science_destination_fil}/{new_file}"
                print("NEW_PATH:", new_path)
                science = science_origin + fil + "/" + file_name
                # First subtract ESO Reflex background images
                # frame = (frame_deg / f.get_pixel_scale(file=science, astropy_units=True)[1]).to(f.pix).value
                if eso_back:
                    background_eso = background_origin_eso + fil + "/" + file_name.replace("SCIENCE_REDUCED",
                                                                                           "PHOT_BACKGROUND_SCI")

                    ff.subtract_file(file=science, sub_file=background_eso, output=new_path)
                    science_image = new_path

                if method != "ESO backgrounds only":

                    print(ra, dec)

                    print("Science image:", science)
                    science_image = fits.open(science)
                    print("Science file:", science_image)
                    wcs_this = WCS(header=science_image[0].header)

                    if method == "SExtractor backgrounds only":
                        background = background_origin + fil + "/" + file_name + "_back.fits"
                        print("Background image:", background)
                    else:
                        if method == "median value":
                            print(science_image[0].data.shape)
                            _, background_value, _ = sigma_clipped_stats(science_image[0].data)
                            background = deepcopy(science_image)

                            background[0].data = np.full(shape=science_image[0].data.shape, fill_value=background_value)
                            background_path = background_origin + fil + "/" + file_name.replace("SCIENCE_REDUCED",
                                                                                                "PHOT_BACKGROUND_MEDIAN")

                            # Next do background fitting.
                        else:

                            background = deepcopy(science_image)
                            background[0].data = np.zeros(background[0].data.shape)
                            background_path = background_origin + fil + "/" + file_name.replace("SCIENCE_REDUCED",
                                                                                                "PHOT_BACKGROUND_FITTED")

                            for i, ra in enumerate(ras):
                                dec = decs[i]
                                x, y = wcs_this.all_world2pix(ra, dec, 0)
                                print(x, y)

                                bottom, top, left, right = ff.subimage_edges(data=science_image[0].data, x=x, y=y,
                                                                             frame=frame)

                                if do_mask:
                                    # Produce a pixel mask that roughly masks out the true sources in the image so that
                                    # they don't get fitted.
                                    mask_max = 10
                                    _, pixel_scale = ff.get_pixel_scale(science_image)
                                    sextractor = Table.read(
                                        f"{data_dir}analysis/sextractor/4-divided_by_exp_time/{fil}/{file_name.replace('.fits', '_psf-fit.cat')}",
                                        format='ascii.sextractor')
                                    weights = np.ones(shape=science_image[0].data.shape)

                                    for obj in filter(
                                            lambda o: left < o["X_IMAGE"] < right and bottom < o["Y_IMAGE"] < top,
                                            sextractor):
                                        mask_rad = min(int(obj["A_WORLD"] * obj["KRON_RADIUS"] / pixel_scale), mask_max)
                                        x_prime = int(np.round(obj["X_IMAGE"]))
                                        y_prime = int(np.round(obj["Y_IMAGE"]))
                                        weights[y_prime - mask_rad:y_prime + mask_rad,
                                        x_prime - mask_rad:x_prime + mask_rad] = 0.0

                                    plt.imshow(weights, origin="lower")
                                    plt.savefig(
                                        background_origin + fil + "/" + file_name.replace("norm.fits", "mask.png"))
                                else:
                                    weights = None

                                background_this = fit_background_fits(image=science_image,
                                                                      model_type=method[:method.find(" ")],
                                                                      deg=degree, local=local,
                                                                      global_sub=global_sub,
                                                                      centre_x=x, centre_y=y, frame=frame,
                                                                      weights=weights)
                                background[0].data += background_this[0].data

                                if recorrect_subbed:
                                    offset = get_median_background(image=science,
                                                                   ra=epoch_params["renormalise_centre_ra"],
                                                                   dec=epoch_params["renormalise_centre_dec"], frame=50,
                                                                   show=False,
                                                                   output=new_path[
                                                                          :new_path.find("bg_sub")] + "renorm_patch_")
                                    print("RECORRECT_SUBBED:", recorrect_subbed)
                                    print("SUBTRACTING FROM BACKGROUND:", offset)
                                    print(bottom, top, left, right)
                                    print(background[0].data[bottom:top, left:right].shape)
                                    print(np.median(background[0].data[bottom:top, left:right]))
                                    background[0].data[bottom:top, left:right] -= offset
                                    print(np.median(background[0].data[bottom:top, left:right]))

                                if trim_image:
                                    print("TRIMMED_PATH_FIL:", trimmed_path_fil)

                                    science_image = ff.trim_file(path=science_image, left=left, right=right, top=top,
                                                                 bottom=bottom,
                                                                 new_path=trimmed_path_fil + file_name.replace(
                                                                     "norm.fits",
                                                                     "trimmed_to_back.fits"))
                                    print("Science after trim:", science_image)

                                    background = ff.trim_file(path=background, left=left, right=right, top=top,
                                                              bottom=bottom,
                                                              new_path=background_path)

                            print("Writing background to:")
                            print(background_path)
                            background.writeto(background_path, overwrite=True)

                    print("SCIENCE:", science_image)
                    print("BACKGROUND:", background)

                    subbed = ff.subtract_file(file=science_image, sub_file=background, output=new_path)

                    # # TODO: check if regions overlap
                    #
                    # plt.hist(subbed[0].data[int(y - frame + 1):int(y + frame - 1),
                    #          int(x - frame + 1):int(x + frame - 1)].flatten(),
                    #          bins=10)
                    # plt.savefig(new_path[:new_path.find("bg_sub")] + "histplot.png")
                    # plt.close()

    copyfile(data_dir + "/" + origin + "/" + data_title + ".log", destination + data_title + ".log")
    u.write_log(path=destination + data_title + ".log",
                action=f'Backgrounds subtracted using 4-background_subtract.py with method {method}\n')
コード例 #7
0
ファイル: params.py プロジェクト: Physarah/craftutils
    if not quiet:
        print('Saving parameter file to ' + output)

    for param in p:
        if type(p[param]) is date:
            p[param] = str(p[param])

    with open(output, 'w') as fj:
        json.dump(p, fj)

    return p


config = check_for_config()
param_path = u.check_trailing_slash(config['param_dir'])


def path_or_params_obj(obj: Union[dict, str],
                       instrument: str = 'FORS2',
                       quiet: bool = False):
    if type(obj) is str:
        return obj, object_params_instrument(obj,
                                             instrument=instrument,
                                             quiet=quiet)
    elif type(obj) is dict:
        params = obj
        obj = params[
            'data_title']  # TODO: This is broken since you removed data_title from epoch params.
        return obj, params
コード例 #8
0
ファイル: fits_files.py プロジェクト: Physarah/craftutils
def fits_table(input_path: str,
               output_path: str = "",
               science_only: bool = True):
    """
    Produces and writes to disk a table of .fits files in the given path, with the vital statistics of each. Intended
    only for use with raw ESO data.
    :param input_path:
    :param output_path:
    :param science_only: If True, we are writing a list for a folder that also contains calibration files, which we want
     to ignore.
    :return:
    """

    # If there's no trailing slash in the paths, add one.
    input_path = u.check_trailing_slash(input_path)

    if output_path == "":
        output_path = input_path + "fits_table.csv"
    elif output_path[-4:] != ".csv":
        if output_path[-1] == "/":
            output_path = output_path + "fits_table.csv"
        else:
            output_path = output_path + ".csv"

    print('Writing table of fits files to: \n', output_path)

    files = os.listdir(input_path)
    files.sort()
    files_fits = []

    # Keep only the relevant fits files

    for f in files:
        if f[-5:] == ".fits":
            files_fits.append(f)

    # Create list of dictionaries to be used as the output data
    output = []

    ids = string.ascii_lowercase
    if len(ids) < len(files_fits):
        ids = ids + string.ascii_uppercase
    if len(ids) < len(files_fits):
        ids = ids + string.digits

    for i, f in enumerate(files_fits):
        data = {}
        file = fits.open(input_path + f)
        header = file[0].header
        data['identifier'] = f
        if science_only and ('ESO DPR CATG' not in header
                             or 'SCIENCE' not in header['ESO DPR CATG']):
            continue
        if len(ids) >= len(files_fits):
            data['id'] = ids[i]
        if "OBJECT" in header:
            data['object'] = header["OBJECT"]
        if "ESO OBS NAME" in header:
            data['obs_name'] = header["ESO OBS NAME"]
        if "EXPTIME" in header:
            data['exp_time'] = header["EXPTIME"]
        if "AIRMASS" in header:
            data['airmass'] = header["AIRMASS"]
        elif "ESO TEL AIRM START" in header and "ESO TEL AIRM END":
            data['airmass'] = (header["ESO TEL AIRM START"] +
                               header["ESO TEL AIRM END"]) / 2
        if "CRVAL1" in header:
            data['ref_ra'] = header["CRVAL1"]
        if "CRVAL2" in header:
            data['ref_dec'] = header["CRVAL2"]
        if "CRPIX1" in header:
            data['ref_pix_x'] = header["CRPIX1"]
        if "CRPIX2" in header:
            data['ref_pix_y'] = header["CRPIX2"]
        if "EXTNAME" in header:
            data['chip'] = header["EXTNAME"]
        elif "ESO DET CHIP1 ID" in header:
            if header["ESO DET CHIP1 ID"] == 'CCID20-14-5-3':
                data['chip'] = 'CHIP1'
            if header["ESO DET CHIP1 ID"] == 'CCID20-14-5-6':
                data['chip'] = 'CHIP2'
        if "GAIN" in header:
            data['gain'] = header["GAIN"]
        if "INSTRUME" in header:
            data['instrument'] = header["INSTRUME"]
        if "ESO TEL AIRM START" in header:
            data['airmass_start'] = header["ESO TEL AIRM START"]
        if "ESO TEL AIRM END" in header:
            data['airmass_end'] = header["ESO TEL AIRM END"]
        if "ESO INS OPTI3 NAME" in header:
            data['collimater'] = header["ESO INS OPTI3 NAME"]
        if "ESO INS OPTI5 NAME" in header:
            data['filter1'] = header["ESO INS OPTI5 NAME"]
        if "ESO INS OPTI6 NAME" in header:
            data['filter2'] = header["ESO INS OPTI6 NAME"]
        if "ESO INS OPTI7 NAME" in header:
            data['filter3'] = header["ESO INS OPTI7 NAME"]
        if "ESO INS OPTI9 NAME" in header:
            data['filter4'] = header["ESO INS OPTI9 NAME"]
        if "ESO INS OPTI10 NAME" in header:
            data['filter5'] = header["ESO INS OPTI10 NAME"]
        if "ESO INS OPTI8 NAME" in header:
            data['camera'] = header["ESO INS OPTI8 NAME"]
        if "NAXIS1" in header:
            data['pixels_x'] = header["NAXIS1"]
        if "NAXIS2" in header:
            data['pixels_y'] = header["NAXIS2"]
        if "SATURATE" in header:
            data['saturate'] = header["SATURATE"]
        if "MJD-OBS" in header:
            data['mjd_obs'] = header["MJD-OBS"]
        output.append(data)
        file.close()

    output.sort(key=lambda a: a['identifier'])

    out_file = pd.DataFrame(output)
    out_file.to_csv(output_path)

    return out_file
コード例 #9
0
    p = load_params(file=yaml_file)

    u.debug_print(1, 'Saving parameter file to ' + output)

    for param in p:
        if type(p[param]) is date:
            p[param] = str(p[param])

    with open(output, 'w') as fj:
        json.dump(p, fj)

    return p


config = check_for_config()
param_dir = u.check_trailing_slash(config['param_dir'])
project_path = u.check_trailing_slash(config['proj_dir'])
data_path = u.check_trailing_slash(config["top_data_dir"])
furby_path = None
if "furby_dir" in config and config["furby_dir"] is not None:
    furby_path = u.check_trailing_slash(config["furby_dir"])


def get_project_git_hash(short: bool = False):
    return u.get_git_hash(directory=project_path, short=short)


def path_or_params_obj(obj: Union[dict, str],
                       instrument: str = 'FORS2',
                       quiet: bool = False):
    if type(obj) is str: