# This script will go through all image tiles and detects crater area using sliding window method. # Then, write results as a csv file to the results folder. The results of this script is the input to the remove_duplicates.py script. # you need to provide the tile image name as argument after --tileimg command. For instance tile1_24 param = Param.Param() cwd = os.getcwd() # setup CNN cnn = CNN(img_shape=(50, 50, 1)) cnn.add_convolutional_layer(5, 16) cnn.add_convolutional_layer(5, 36) cnn.add_flat_layer() cnn.add_fc_layer(size=64, use_relu=True) cnn.add_fc_layer(size=16, use_relu=True) cnn.add_fc_layer(size=2, use_relu=False) cnn.finish_setup() # model.set_data(data) # restore previously trained CNN model cnn_model_path = os.path.join(cwd, 'models/cnn/crater_model_cnn.ckpt') cnn.restore(cnn_model_path) # go through all the tile folders gt_list = ["1_24", "1_25", "2_24", "2_25", "3_24", "3_25"] for gt_num in gt_list: tile_img = 'tile' + gt_num path = os.path.join('crater_data', 'tiles') img = cv.imread(os.path.join(path, tile_img + '.pgm'), 0)
# Load dataxcv images, labels, hot_one = load_crater_data() data = Data(images, hot_one, random_state=42) print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) model = Network(img_shape=(50, 50, 1)) model.add_flat_layer() model.add_fc_layer(size=50 * 50, use_relu=True) model.add_fc_layer(size=16, use_relu=True) model.add_fc_layer(size=2, use_relu=False) model.finish_setup() #model.set_data(data) cnn = Network(img_shape=(50, 50, 1)) cnn.add_convolutional_layer(5, 16) cnn.add_convolutional_layer(5, 36) cnn.add_flat_layer() cnn.add_fc_layer(size=64, use_relu=True) cnn.add_fc_layer(size=16, use_relu=True) cnn.add_fc_layer(size=2, use_relu=False) cnn.finish_setup() model_path = os.path.join(cwd, 'results', 'nn_models', 'crater_east_model_nn.ckpt') model.restore(model_path)
from crater_plots import plot_image, plot_conv_weights, plot_conv_layer from keras.applications import imagenet_utils from keras.preprocessing import image from skimage.color import gray2rgb, rgb2gray cwd = os.getcwd() input_shape = (50, 50) preprocess = imagenet_utils.preprocess_input # setup NN nn = Network(img_shape=(50, 50, 1)) nn.add_flat_layer() nn.add_fc_layer(size=50 * 50, use_relu=True) nn.add_fc_layer(size=16, use_relu=True) nn.add_fc_layer(size=2, use_relu=False) nn.finish_setup() # model.set_data(data) # restore previously trained CNN model print("loading the pre-trained NN model") nn_model_path = os.path.join(cwd, 'results', 'nn_models', 'crater_east_model_nn.ckpt') nn.restore(nn_model_path) def transform_img_fn(path_list): org_out = [] trans_out = [] for img_path in path_list: src_img = cv2.imread(img_path) gray_img = rgb2gray(src_img)