def rhombcp(): cp = CreasePattern() cp.nodes = [[ 0, 0, 0 ], [ 2, 0, 0 ], [ 4, 0, 0 ], [ 0, 1, 0 ], [ 1, 1, 0 ], [ 3, 1, 0 ], [ 4, 1, 0]] cp.crease_lines = [[ 0, 1 ], [ 1, 2 ], [ 0, 3 ], [ 2, 6 ], [ 0, 4 ], [ 1, 4 ], [ 3, 4 ], [ 5, 4 ], [ 1, 5 ], [ 2, 5 ], [ 6, 5 ], ] cp.constraints = [[3, 2], [3, 1], [4, 1], [4, 2], [5, 1], [5, 2], [6, 0], [6, 1], [6, 2], [0, 2]] # lift node 0 in z-axes cp.constraint_values = np.zeros((10,), dtype = float) cp.constraint_values[3] = 0.4 cp.constraint_values[5] = 0.4 cp.constraint_values[8] = 0.0 cp.constraint_values[9] = 0.0 X = np.zeros((cp.n_dofs,), dtype = float) X[3] = 0.1 X[5] = 0.1 print 'initial lengths\n', cp.c_lengths print 'initial vectors\n', cp.c_vectors print 'initial R\n', cp.get_R(X) print 'initial dR\n', cp.get_dR(X) print 'constrained dofs\n', cp.cnstr_dofs print 'free dofs\n', cp.free_dofs # Newton-Raphson iteration MAX_ITER = 150 TOLERANCE = 1e-10 n_steps = 3 cv = np.copy(cp.constraint_values) for k in range(n_steps): print 'step', k #cp.set_next_node(X) cp.constraint_values = (k + 1.) / float(n_steps) * cv i = 0 while i in range(MAX_ITER): dR = cp.get_dR(X)[:, cp.free_dofs ] print 'dR', dR.shape R = cp.get_R(X) if np.linalg.norm(R) < TOLERANCE: print '==== converged in ', i, 'iterations ====' cp.set_next_node(X) break dX = np.linalg.solve(dR, -R) X[ cp.free_dofs ] += dX i += 1 else: raise ValueError break print '========== results ==============' print 'solution X\n', X print 'final positions\n', cp.get_new_nodes(X) print 'final vectors\n', cp.get_new_vectors(X) print 'final lengths\n', cp.get_new_lengths(X) # initialise View my_model = CreasePatternView(data = cp) my_model.configure_traits()
def cp_t3(self): # ------------------------------------------------------------------------------ # test 6 triangles (standard pattern) # 7 nodes # 12 creaselines # 3 * 7 - 12 constrains needed # ------------------------------------------------------------------------------ cp = CreasePattern() cp.nodes = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [-1, 1, 0], [-1, 0, 0], [-1, -1, 0], [1, -1, 0]] cp.crease_lines = [ [0, 1], [1, 2], [2, 0], [2, 3], [3, 0], [3, 4], [4, 0], [4, 5], [5, 0], [5, 6], [6, 0], [6, 1], ] cp.constraints = [[0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [4, 1], [2, 0], [6, 0], [4, 2]] # lift node 0 in z-axes cp.constraint_values = [0, 0.5, 0, 0, 0, 0, 0, 0, 0] X = np.zeros((cp.n_dofs,), dtype=float) print "initial lengths\n", cp.c_lengths print "initial vectors\n", cp.c_vectors print "initial R\n", cp.get_R(X) print "initial dR\n", cp.get_dR(X) print "constrained dofs\n", cp.cnstr_dofs print "free dofs\n", cp.free_dofs # Newton-Raphson iteration MAX_ITER = 150 TOLERANCE = 1e-10 n_steps = 8 cv = np.copy(cp.constraint_values) for k in range(n_steps): print "step", k cp.constraint_values = (k + 1.0) / float(n_steps) * cv for i in range(MAX_ITER): dR = cp.get_dR(X)[:, cp.free_dofs] print "dR", dR.shape R = cp.get_R(X) if np.linalg.norm(R) < TOLERANCE: print "==== converged in ", i, "iterations ====" break dX = np.linalg.solve(dR, -R) X[cp.free_dofs] += dX cp.set_next_node(X) print "========== results ==============" print "solution X\n", X print "final positions\n", cp.get_new_nodes(X) print "final vectors\n", cp.get_new_vectors(X) print "final lengths\n", cp.get_new_lengths(X) # initialise View from crease_pattern_view import CreasePatternView my_model = CreasePatternView(data=cp) print my_model.data.iteration_nodes.shape my_model.configure_traits()
), dock = 'tab', resizable = True, id = 'creaspatternview', width = 1.0, height = 1.0 ) if __name__ == '__main__': # initialise CreasePattern cp = CreasePattern() cp.nodes = [[ 0, 0, 0 ], [ 1, 0, 0 ], [ 1, 1, 0 ]] cp.crease_lines = [[ 0, 1 ], [1, 2]] # , [2, 0]] X = np.zeros( ( cp.n_dofs, ), dtype = float ) cp.set_next_node( X ) # initialise View my_model = CreasePatternView( data = cp ) my_model.configure_traits()