コード例 #1
0
def rhombcp():

    cp = CreasePattern()

    cp.nodes = [[ 0, 0, 0 ],
                [ 2, 0, 0 ],
                [ 4, 0, 0 ],
                [ 0, 1, 0 ],
                [ 1, 1, 0 ],
                [ 3, 1, 0 ],
                [ 4, 1, 0]]

    cp.crease_lines = [[ 0, 1 ],
                       [ 1, 2 ],
                       [ 0, 3 ],
                       [ 2, 6 ],
                       [ 0, 4 ],
                       [ 1, 4 ],
                       [ 3, 4 ],
                       [ 5, 4 ],
                       [ 1, 5 ],
                       [ 2, 5 ],
                       [ 6, 5 ],
                        ]

    cp.constraints = [[3, 2],
                      [3, 1],
                      [4, 1],
                      [4, 2],
                      [5, 1],
                      [5, 2],
                      [6, 0],
                      [6, 1],
                      [6, 2],
                      [0, 2]]

    # lift node 0 in z-axes
    cp.constraint_values = np.zeros((10,), dtype = float)
    cp.constraint_values[3] = 0.4
    cp.constraint_values[5] = 0.4
    cp.constraint_values[8] = 0.0
    cp.constraint_values[9] = 0.0

    X = np.zeros((cp.n_dofs,), dtype = float)
    X[3] = 0.1
    X[5] = 0.1

    print 'initial lengths\n', cp.c_lengths
    print 'initial vectors\n', cp.c_vectors

    print 'initial R\n', cp.get_R(X)
    print 'initial dR\n', cp.get_dR(X)

    print 'constrained dofs\n', cp.cnstr_dofs
    print 'free dofs\n', cp.free_dofs

    # Newton-Raphson iteration
    MAX_ITER = 150
    TOLERANCE = 1e-10
    n_steps = 3
    cv = np.copy(cp.constraint_values)

    for k in range(n_steps):
        print 'step', k
        #cp.set_next_node(X)
        cp.constraint_values = (k + 1.) / float(n_steps) * cv
        i = 0
        while i in range(MAX_ITER):
            dR = cp.get_dR(X)[:, cp.free_dofs ]
            print 'dR', dR.shape
            R = cp.get_R(X)
            if np.linalg.norm(R) < TOLERANCE:
                print '==== converged in ', i, 'iterations ===='
                cp.set_next_node(X)
                break
            dX = np.linalg.solve(dR, -R)
            X[ cp.free_dofs ] += dX
            i += 1
        else:
            raise ValueError
            break


    print '========== results =============='
    print 'solution X\n', X
    print 'final positions\n', cp.get_new_nodes(X)
    print 'final vectors\n', cp.get_new_vectors(X)
    print 'final lengths\n', cp.get_new_lengths(X)

    # initialise View
    my_model = CreasePatternView(data = cp)

    my_model.configure_traits()
コード例 #2
0
    def cp_t3(self):

        # ------------------------------------------------------------------------------
        # test 6 triangles (standard pattern)
        # 7 nodes
        # 12 creaselines
        # 3 * 7 - 12 constrains needed
        # ------------------------------------------------------------------------------

        cp = CreasePattern()

        cp.nodes = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [-1, 1, 0], [-1, 0, 0], [-1, -1, 0], [1, -1, 0]]

        cp.crease_lines = [
            [0, 1],
            [1, 2],
            [2, 0],
            [2, 3],
            [3, 0],
            [3, 4],
            [4, 0],
            [4, 5],
            [5, 0],
            [5, 6],
            [6, 0],
            [6, 1],
        ]

        cp.constraints = [[0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [4, 1], [2, 0], [6, 0], [4, 2]]

        # lift node 0 in z-axes
        cp.constraint_values = [0, 0.5, 0, 0, 0, 0, 0, 0, 0]

        X = np.zeros((cp.n_dofs,), dtype=float)

        print "initial lengths\n", cp.c_lengths
        print "initial vectors\n", cp.c_vectors

        print "initial R\n", cp.get_R(X)
        print "initial dR\n", cp.get_dR(X)

        print "constrained dofs\n", cp.cnstr_dofs
        print "free dofs\n", cp.free_dofs

        # Newton-Raphson iteration
        MAX_ITER = 150
        TOLERANCE = 1e-10
        n_steps = 8
        cv = np.copy(cp.constraint_values)

        for k in range(n_steps):
            print "step", k
            cp.constraint_values = (k + 1.0) / float(n_steps) * cv
            for i in range(MAX_ITER):
                dR = cp.get_dR(X)[:, cp.free_dofs]
                print "dR", dR.shape
                R = cp.get_R(X)
                if np.linalg.norm(R) < TOLERANCE:
                    print "==== converged in ", i, "iterations ===="
                    break
                dX = np.linalg.solve(dR, -R)
                X[cp.free_dofs] += dX
            cp.set_next_node(X)

        print "========== results =============="
        print "solution X\n", X
        print "final positions\n", cp.get_new_nodes(X)
        print "final vectors\n", cp.get_new_vectors(X)
        print "final lengths\n", cp.get_new_lengths(X)

        # initialise View
        from crease_pattern_view import CreasePatternView

        my_model = CreasePatternView(data=cp)
        print my_model.data.iteration_nodes.shape

        my_model.configure_traits()
コード例 #3
0
                      
                       
                        ),
                      
                dock = 'tab',
                resizable = True,
                id = 'creaspatternview',
                width = 1.0,
                height = 1.0
                )

if __name__ == '__main__':

    # initialise CreasePattern
    cp = CreasePattern()

    cp.nodes = [[ 0, 0, 0 ],
                [ 1, 0, 0 ],
                [ 1, 1, 0 ]]

    cp.crease_lines = [[ 0, 1 ], [1, 2]] # , [2, 0]]

    X = np.zeros( ( cp.n_dofs, ), dtype = float )

    cp.set_next_node( X )

    # initialise View
    my_model = CreasePatternView( data = cp )

    my_model.configure_traits()