コード例 #1
0
def import_hdf_nist_special(pth, filename, dset, output_cls_instance):
    """
    Import data from HDF File as specified by NIST-specific settings

    Returns
    -------
    Success : bool
        Whether import was successful
    """

    print('\n')
    import_success = _hdf_import_data(pth, filename, dset, output_cls_instance)
    if import_success is False:
        raise ValueError('hdf_import_data failed')
        return False
    _meta_process(_snb(), output_cls_instance)
    return True
コード例 #2
0
def import_hdf_nist_special(pth, filename, dset, output_cls_instance):
    """
    Import data from HDF File as specified by NIST-specific settings

    Returns
    -------
    Success : bool
        Whether import was successful
    """

    print('\n')
    try:
        import_success = _hdf_import_data(pth, filename, dset,
                                          output_cls_instance)
        if import_success is None or import_success is False:
            raise ValueError('hdf_import_data returned None')
        _meta_process(_snb(), output_cls_instance)
    except:
        print('Something failed in import_hdf_nist_special')
        return False
    else:
        print('\n')
        return True
コード例 #3
0
            #        print(output_cls_instance.reps.data.shape)
            output_cls_instance.reps.update_calib_from_data()
        except:
            print('Something failed in meta_process: Spectra rep-calib')

    elif type(output_cls_instance) == _Spectrum:
        print('Type Spectrum')


if __name__ == '__main__':

    from crikit.io.meta_configs import (special_nist_bcars2 as _snb)

    from crikit.io.hdf5 import hdf_import_data as _hdf_import_data
    rosetta = _snb()

    filename = _os.path.abspath('../../../mP2_w_small.h5')

    spect_dark = _Spectra()
    _hdf_import_data(filename, '/Spectra/Dark_3_5ms_2', spect_dark)
    meta_process(rosetta, spect_dark)
    print(spect_dark.reps)

    print('')
    img = _Hsi()
    _hdf_import_data(filename,
                     '/BCARSImage/mP2_3_5ms_Pos_2_0/mP2_3_5ms_Pos_2_0_small',
                     img)
    meta_process(rosetta, img)
    print(img.freq.__dict__)
コード例 #4
0
ファイル: meta_process.py プロジェクト: CCampJr/crikit2
    #        print(output_cls_instance.reps.data.shape)
            output_cls_instance.reps.update_calib_from_data()
        except:
            print('Something failed in meta_process: Spectra rep-calib')

    elif type(output_cls_instance) == _Spectrum:
        print('Type Spectrum')

if __name__ == '__main__':

    from crikit.io.meta_configs import (special_nist_bcars2
                                            as _snb)

    from crikit.io.hdf5 import hdf_import_data as _hdf_import_data
    rosetta = _snb()

    filename = _os.path.abspath('../../../mP2_w_small.h5')

    spect_dark = _Spectra()
    _hdf_import_data(filename,'/Spectra/Dark_3_5ms_2',spect_dark)
    meta_process(rosetta, spect_dark)
    print(spect_dark.reps)

    print('')
    img = _Hsi()
    _hdf_import_data(filename,'/BCARSImage/mP2_3_5ms_Pos_2_0/mP2_3_5ms_Pos_2_0_small',img)
    meta_process(rosetta, img)
    print(img.freq.__dict__)