コード例 #1
0
ファイル: test_actions.py プロジェクト: zzhou387/crocoddyl
    def setUp(self):
        # Creating NumDiff action model
        self.MODEL_NUMDIFF = ActionModelNumDiff(self.MODEL,
                                                withGaussApprox=True)

        # Creating the action data
        self.DATA = self.MODEL.createData()
        self.DATA_NUMDIFF = self.MODEL_NUMDIFF.createData()
コード例 #2
0
ファイル: test_actions.py プロジェクト: zzhou387/crocoddyl
class ActionModelTestCase(unittest.TestCase):
    MODEL = None
    MODEL_NUMDIFF = None
    NUMDIFF_MOD = NUMDIFF_MODIFIER

    def setUp(self):
        # Creating NumDiff action model
        self.MODEL_NUMDIFF = ActionModelNumDiff(self.MODEL,
                                                withGaussApprox=True)

        # Creating the action data
        self.DATA = self.MODEL.createData()
        self.DATA_NUMDIFF = self.MODEL_NUMDIFF.createData()

    def test_calc_retunrs_state(self):
        # Generating random state and control vectors
        x = self.MODEL.State.rand()
        u = np.random.rand(self.MODEL.nu)

        # Getting the state dimension from calc() call
        nx = self.MODEL.calc(self.DATA, x, u)[0].shape

        # Checking the dimension for the state and its tangent
        self.assertEqual(nx, (self.MODEL.nx, ),
                         "Dimension of state vector is wrong.")

    def test_calc_returns_a_cost(self):
        # Getting the cost value computed by calc()
        x = self.MODEL.State.rand()
        u = np.random.rand(self.MODEL.nu)
        cost = self.MODEL.calc(self.DATA, x, u)[1]

        # Checking that calc returns a cost value
        self.assertTrue(isinstance(cost, float),
                        "calc() doesn't return a cost value.")

    def test_partial_derivatives_against_numdiff(self):
        # Generating random values for the state and control
        x = self.MODEL.State.rand()
        u = np.random.rand(self.MODEL.nu)

        # Computing the action derivatives
        self.MODEL.calcDiff(self.DATA, x, u)
        self.MODEL_NUMDIFF.calcDiff(self.DATA_NUMDIFF, x, u)

        # Checking the partial derivatives against NumDiff
        tol = self.NUMDIFF_MOD * self.MODEL_NUMDIFF.disturbance
        assertNumDiff(self.DATA.Fx, self.DATA_NUMDIFF.Fx, tol)
        assertNumDiff(self.DATA.Fu, self.DATA_NUMDIFF.Fu, tol)
        assertNumDiff(self.DATA.Lx, self.DATA_NUMDIFF.Lx, tol)
        assertNumDiff(self.DATA.Lu, self.DATA_NUMDIFF.Lu, tol)
        assertNumDiff(self.DATA.Lxx, self.DATA_NUMDIFF.Lxx, tol)
        assertNumDiff(self.DATA.Lxu, self.DATA_NUMDIFF.Lxu, tol)
        assertNumDiff(self.DATA.Luu, self.DATA_NUMDIFF.Luu, tol)
コード例 #3
0
impulseModel = ImpulseModel6D(rmodel, rmodel.getFrameId(contactName))
costModel = CostModelImpactWholeBody(rmodel)
model = ActionModelImpact(rmodel, impulseModel, costModel)
model.impulseWeight = 1.
data = model.createData()

x = model.State.rand()
# x[7:13] = 0
q = a2m(x[:model.nq])
v = a2m(x[model.nq:])

model.calc(data, x)
model.calcDiff(data, x)

mnum = ActionModelNumDiff(model, withGaussApprox=True)
dnum = mnum.createData()

nx, ndx, nq, nv, nu = model.nx, model.ndx, model.nq, model.nv, model.nu

mnum.calcDiff(dnum, x, None)
assertNumDiff(
    dnum.Fx[:nv, :nv], data.Fx[:nv, :nv], NUMDIFF_MODIFIER * mnum.disturbance
)  # threshold was 1e-3, is now 2.11e-4 (see assertNumDiff.__doc__)
assertNumDiff(
    dnum.Fx[:nv, nv:], data.Fx[:nv, nv:], NUMDIFF_MODIFIER * mnum.disturbance
)  # threshold was 1e-3, is now 2.11e-4 (see assertNumDiff.__doc__)
assertNumDiff(
    dnum.Fx[nv:, nv:], data.Fx[nv:, nv:], NUMDIFF_MODIFIER * mnum.disturbance
)  # threshold was 1e-3, is now 2.11e-4 (see assertNumDiff.__doc__)
コード例 #4
0
ddata = dmodel.createData()
model = IntegratedActionModelEuler(dmodel)
data = model.createData()

x = model.State.zero()
u = np.zeros(model.nu)
xn, c = model.calc(data, x, u)

model.timeStep = 1
model.differential.costs
for k in model.differential.costs.costs.keys():
    model.differential.costs[k].weight = 1

model.calcDiff(data, x, u)

mnum = ActionModelNumDiff(model, withGaussApprox=True)
dnum = mnum.createData()

mnum.calcDiff(dnum, x, u)
assertNumDiff(data.Fx, dnum.Fx,
              NUMDIFF_MODIFIER * mnum.disturbance)  # threshold was 3.16e-2, is now 2.11e-4 (see assertNumDiff.__doc__)
assertNumDiff(data.Fu, dnum.Fu,
              NUMDIFF_MODIFIER * mnum.disturbance)  # threshold was 3.16e-2, is now 2.11e-4 (see assertNumDiff.__doc__)
assertNumDiff(data.Lx, dnum.Lx,
              NUMDIFF_MODIFIER * mnum.disturbance)  # threshold was 3.16e-2, is now 2.11e-4 (see assertNumDiff.__doc__)
assertNumDiff(data.Lu, dnum.Lu,
              NUMDIFF_MODIFIER * mnum.disturbance)  # threshold was 3.16e-2, is now 2.11e-4 (see assertNumDiff.__doc__)
assertNumDiff(dnum.Lxx, data.Lxx,
              NUMDIFF_MODIFIER * mnum.disturbance)  # threshold was 3.16e-2, is now 2.11e-4 (see assertNumDiff.__doc__)
assertNumDiff(dnum.Lxu, data.Lxu,
              NUMDIFF_MODIFIER * mnum.disturbance)  # threshold was 3.16e-2, is now 2.11e-4 (see assertNumDiff.__doc__)
コード例 #5
0
nv = nq

dmodel = DifferentialActionModelLQR(nq, nu, driftFree=False)
ddata = dmodel.createData()
model = IntegratedActionModelRK4(dmodel)
data = model.createData()

x = model.State.rand()

# u = np.random.rand( model.nu )
u = rand(model.nu)
xn, c = model.calc(data, x, u)

model.timeStep = 1

mnum = ActionModelNumDiff(model, withGaussApprox=False)
dnum = mnum.createData()

model.calcDiff(data, x, u)


def get_k(q, v):
    x_ = np.vstack([q, v])
    model.calc(data, m2a(x_), u)
    return [a2m(ki) for ki in data.ki]


def get_ku(u):
    model.calc(data, x, m2a(u))
    return [a2m(ki) for ki in data.ki]