class UCF101Cropper(object): def __init__(self, patch_shape, kernel, hyperparameters): self.cropper1d = Cropper(patch_shape[:1], kernel, hyperparameters, name="cropper1d") self.cropper3d = Cropper(patch_shape , kernel, hyperparameters, name="cropper3d") self.patch_shape = patch_shape self.n_spatial_dims = len(patch_shape) # self.fc_conv = masonry.construct_cnn( # name="fc_conv", # layer_specs=[ # ], # input_shape=(patch_shape[0], 1), # n_channels=4096, # batch_normalize=hyperparameters["batch_normalize_patch"]) self.conv_conv = masonry.construct_cnn( name="fc_conv", layer_specs=[ dict(size=(5, 1, 1), num_filters=512, pooling_size=(2, 1, 1), pooling_step=(2, 1, 1)), dict(size=(5, 1, 1), num_filters=512, pooling_size=(2, 1, 1), pooling_step=(2, 1, 1)), ], input_shape=patch_shape, n_channels=512, batch_normalize=hyperparameters["batch_normalize_patch"]) def initialize(self): #self.fc_conv.initialize() self.conv_conv.initialize() def apply(self, image, image_shape, location, scale): # image is secretly two variables; conv and fc features fc, conv = image fc_shape, conv_shape = image_shape # (batch, 4096, 16, 1) fc_patch = T.shape_padright(self.cropper1d.apply( fc, fc_shape[:, 1:], location[:, 0, np.newaxis], scale[:, 0, np.newaxis], )[0]) # (batch, 512, 16, 1, 1) conv_patch = self.cropper3d.apply( conv, conv_shape[:, 1:], location, scale, )[0] fc_repr = fc_patch #fc_repr = self.fc_conv.apply(fc_patch) conv_repr = self.conv_conv.apply(conv_patch) # global average pooling fc_repr = fc_repr.mean(axis=range(2, fc_repr.ndim)) conv_repr = conv_repr.mean(axis=range(2, conv_repr.ndim)) patch = T.concatenate([fc_repr, conv_repr], axis=1) return patch, 0. @property def output_shape(self): return (4096 + 512,)
def __init__(self, patch_shape, kernel, hyperparameters): self.cropper1d = Cropper(patch_shape[:1], kernel, hyperparameters, name="cropper1d") self.cropper3d = Cropper(patch_shape , kernel, hyperparameters, name="cropper3d") self.patch_shape = patch_shape self.n_spatial_dims = len(patch_shape) # self.fc_conv = masonry.construct_cnn( # name="fc_conv", # layer_specs=[ # ], # input_shape=(patch_shape[0], 1), # n_channels=4096, # batch_normalize=hyperparameters["batch_normalize_patch"]) self.conv_conv = masonry.construct_cnn( name="fc_conv", layer_specs=[ dict(size=(5, 1, 1), num_filters=512, pooling_size=(2, 1, 1), pooling_step=(2, 1, 1)), dict(size=(5, 1, 1), num_filters=512, pooling_size=(2, 1, 1), pooling_step=(2, 1, 1)), ], input_shape=patch_shape, n_channels=512, batch_normalize=hyperparameters["batch_normalize_patch"])