コード例 #1
0
def ortogonalize_matrix(m_ij, m_norm_ij):
    """Ortogonalize matrix.

    matrix m_ij is defined in coordinate system (a, b, c).
    It is given as tuple

    Matrix m_norm  used to recalculate coordinates  from direct space
    (a1/|a1|, a2/|a2|, a3/|a3|) to Cartesian one (x||a*, z||c).

    x_cart = m_norm * x_direct

    m_norm  = [[(1 - cos**2 alpha1 - cos**2 alpha2 - cos**2 alpha3 +  \
                 2 cos alpha1 cos alpha2 cos alpha3)**0.5/sin(alpha1),  0,  0],
           [(cos alpha3 - cos alpha1 cos alpha2) / sin alpha1, sin alpha1,  0],
           [cos alpha2, cos alpha1,  1]]

    Should be given as

        m_norm_ij = (_11, _12, _13, _21, _22, _23, _31, _32, _33)

    output matrix s_ij is defined in Cartezian coordinate system defined as
    x||a*, z||c, y= [z x] (right handed)
    """
    s_11, s_12, s_13, s_21, s_22, s_23, s_31, s_32, s_33 = calc_mRmCmRT(
        m_norm_ij, m_ij)
    return s_11, s_12, s_13, s_21, s_22, s_23, s_31, s_32, s_33
コード例 #2
0
def calc_form_factor_tensor_susceptibility(chi_11, chi_22, chi_33, chi_12,
                                           chi_13, chi_23, space_group_symop,
                                           form_factor, cell, h, k, l):
    """Give components of form factor tensor for susceptibility.

    fft_11, fft_12, fft_13
    fft_21, fft_22, fft_23
    fft_31, fft_32, fft_33

    in 3 dimension (hkl, atoms, symmetry elements).
    """
    ff = numpy.array(form_factor, dtype=float)
    sthovl = cell.calc_sthovl(h, k, l)
    # dimension (hkl, atoms)

    r_11 = numpy.array(space_group_symop.r_11, dtype=float)
    r_12 = numpy.array(space_group_symop.r_12, dtype=float)
    r_13 = numpy.array(space_group_symop.r_13, dtype=float)
    r_21 = numpy.array(space_group_symop.r_21, dtype=float)
    r_22 = numpy.array(space_group_symop.r_22, dtype=float)
    r_23 = numpy.array(space_group_symop.r_23, dtype=float)
    r_31 = numpy.array(space_group_symop.r_31, dtype=float)
    r_32 = numpy.array(space_group_symop.r_32, dtype=float)
    r_33 = numpy.array(space_group_symop.r_33, dtype=float)

    chi_21, chi_31, chi_32 = chi_12, chi_13, chi_23

    c11, r11 = numpy.meshgrid(chi_11, r_11, indexing="ij")
    c22, r22 = numpy.meshgrid(chi_22, r_22, indexing="ij")
    c33, r33 = numpy.meshgrid(chi_33, r_33, indexing="ij")
    c12, r12 = numpy.meshgrid(chi_12, r_12, indexing="ij")
    c13, r13 = numpy.meshgrid(chi_13, r_13, indexing="ij")
    c23, r23 = numpy.meshgrid(chi_23, r_23, indexing="ij")
    c21, r21 = numpy.meshgrid(chi_21, r_21, indexing="ij")
    c31, r31 = numpy.meshgrid(chi_31, r_31, indexing="ij")
    c32, r32 = numpy.meshgrid(chi_32, r_32, indexing="ij")

    rcrt_11, rcrt_12, rcrt_13, rcrt_21, rcrt_22, rcrt_23, rcrt_31, rcrt_32, \
        rcrt_33 = calc_mRmCmRT(
            (r11, r12, r13, r21, r22, r23, r31, r32, r33),
            (c11, c12, c13, c21, c22, c23, c31, c32, c33))

    # dimension (hkl, atoms, symmetry)
    n_a = numpy.newaxis
    fft_11 = ff[:, :, n_a] * rcrt_11[n_a, :, :]
    fft_12 = ff[:, :, n_a] * rcrt_12[n_a, :, :]
    fft_13 = ff[:, :, n_a] * rcrt_13[n_a, :, :]
    fft_21 = ff[:, :, n_a] * rcrt_21[n_a, :, :]
    fft_22 = ff[:, :, n_a] * rcrt_22[n_a, :, :]
    fft_23 = ff[:, :, n_a] * rcrt_23[n_a, :, :]
    fft_31 = ff[:, :, n_a] * rcrt_31[n_a, :, :]
    fft_32 = ff[:, :, n_a] * rcrt_32[n_a, :, :]
    fft_33 = ff[:, :, n_a] * rcrt_33[n_a, :, :]
    # ortogonalization should be done
    return fft_11, fft_12, fft_13, fft_21, fft_22, fft_23, fft_31, fft_32, \
        fft_33
コード例 #3
0
def calc_moment_2d_by_susceptibility(r_ij, susc_i, m_norm_ij, h_loc):
    """Recalculate chi_i given according to symmetry elements for each point.

    chi_i  is given in reciprocal unit cell.

    After susceptibility is multiplied in magnetic field defined 

    r_ij:= r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33 
    susc_i:= chi_11, chi_22, chi_33, chi_12, chi_13, chi_23

    Matrix m_norm  used to recalculate coordinates  from direct space
    (a1/|a1|, a2/|a2|, a3/|a3|) to Cartesian one (x||a*, z||c).

    x_cart = m_norm * x_direct

    m_norm  = [[(1 - cos**2 alpha1 - cos**2 alpha2 - cos**2 alpha3 + \
                 2 cos alpha1 cos alpha2 cos alpha3)**0.5/sin(alpha1),  0,  0],
           [(cos alpha3 - cos alpha1 cos alpha2) / sin alpha1, sin alpha1,  0],
           [cos alpha2, cos alpha1,  1]]

    Matrix m_norm should be given as

        m_norm_ij = (_11, _12, _13, _21, _22, _23, _31, _32, _33) 

    Output
    ------
        moment_2d: [points, symmetry]
    """
    n_a = numpy.newaxis
    r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33 = r_ij
    chi_11, chi_22, chi_33, chi_12, chi_13, chi_23 = susc_i
    # [ind, symm]
    chi_2d_ij = calc_mRmCmRT(
        (r_11[n_a, :], r_12[n_a, :], r_13[n_a, :], r_21[n_a, :], r_22[n_a, :],
         r_23[n_a, :], r_31[n_a, :], r_32[n_a, :], r_33[n_a, :]),
        (chi_11[:, n_a], chi_12[:, n_a], chi_13[:, n_a], chi_12[:, n_a],
         chi_22[:, n_a], chi_23[:, n_a], chi_13[:, n_a], chi_23[:, n_a],
         chi_33[:, n_a]))
    chi_orto_ij = ortogonalize_matrix(chi_2d_ij, m_norm_ij)
    moment_2d = calc_product_matrix_vector(chi_orto_ij, h_loc)
    return moment_2d
コード例 #4
0
ファイル: function_2_mem.py プロジェクト: eandklahn/cryspy
def transfer_to_chi_3d(np_indexes, chi_11, chi_22, chi_33, chi_12, chi_13,
                       chi_23, n_xyz, r_ij, b_i):
    """
    Give six 3D arrays of susceptibility.

    Input arguments:
        - np_xyz is numpy array of integer numbers;
        - val_1, ... are numpy array of float numbers.
    """
    (n_x, n_y, n_z) = n_xyz
    (i_x, i_y, i_z) = np_indexes
    chi_3d_11, chi_3d_22 = numpy.zeros(n_xyz), numpy.zeros(n_xyz)
    chi_3d_33, chi_3d_12 = numpy.zeros(n_xyz), numpy.zeros(n_xyz)
    chi_3d_13, chi_3d_23 = numpy.zeros(n_xyz), numpy.zeros(n_xyz)

    for r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33, b_1, b_2, b_3 \
            in zip(*r_ij, *b_i):
        np_ind_x = numpy.mod((numpy.around(
            (i_x * r_11 + i_y * r_12 + i_z * r_13 + n_x * b_1).astype(float),
            0)).astype(int), n_x)
        np_ind_y = numpy.mod((numpy.around(
            (i_x * r_21 + i_y * r_22 + i_z * r_23 + n_y * b_2).astype(float),
            0)).astype(int), n_y)
        np_ind_z = numpy.mod((numpy.around(
            (i_x * r_31 + i_y * r_32 + i_z * r_33 + n_z * b_3).astype(float),
            0)).astype(int), n_z)
        chi_out = calc_mRmCmRT(
            (r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33),
            (chi_11, chi_12, chi_13, chi_12, chi_22, chi_23, chi_13, chi_23,
             chi_33))
        chi_11_rot, chi_12_rot, chi_13_rot, chi_21_rot, chi_22_rot, \
            chi_23_rot, chi_31_rot, chi_32_rot, chi_33_rot = chi_out
        chi_3d_11[np_ind_x, np_ind_y, np_ind_z] = chi_11_rot
        chi_3d_22[np_ind_x, np_ind_y, np_ind_z] = chi_22_rot
        chi_3d_33[np_ind_x, np_ind_y, np_ind_z] = chi_33_rot
        chi_3d_12[np_ind_x, np_ind_y, np_ind_z] = chi_12_rot
        chi_3d_13[np_ind_x, np_ind_y, np_ind_z] = chi_13_rot
        chi_3d_23[np_ind_x, np_ind_y, np_ind_z] = chi_23_rot
    return chi_3d_11, chi_3d_22, chi_3d_33, chi_3d_12, chi_3d_13, chi_3d_23
コード例 #5
0
    def calc_for_iint(self, index_h, index_k, index_l, crystal,
                      flag_internal: bool = True):
        """Calculate the integral intensity for h, k, l reflections."""
        setup = self.setup
        field = float(setup.field)

        refln = crystal.calc_refln(index_h, index_k, index_l)

        refln_s = crystal.calc_refln_susceptibility(index_h, index_k, index_l)

        f_nucl = refln.numpy_f_calc

        sft_11 = refln_s.numpy_chi_11_calc
        sft_12 = refln_s.numpy_chi_12_calc
        sft_13 = refln_s.numpy_chi_13_calc
        sft_21 = refln_s.numpy_chi_21_calc
        sft_22 = refln_s.numpy_chi_22_calc
        sft_23 = refln_s.numpy_chi_23_calc
        sft_31 = refln_s.numpy_chi_31_calc
        sft_32 = refln_s.numpy_chi_32_calc
        sft_33 = refln_s.numpy_chi_33_calc

        sftm_11 = refln_s.numpy_moment_11_calc
        sftm_12 = refln_s.numpy_moment_12_calc
        sftm_13 = refln_s.numpy_moment_13_calc
        sftm_21 = refln_s.numpy_moment_21_calc
        sftm_22 = refln_s.numpy_moment_22_calc
        sftm_23 = refln_s.numpy_moment_23_calc
        sftm_31 = refln_s.numpy_moment_31_calc
        sftm_32 = refln_s.numpy_moment_32_calc
        sftm_33 = refln_s.numpy_moment_33_calc

        _11, _12 = sftm_11+field*sft_11, sftm_12+field*sft_12
        _21, _13 = sftm_21+field*sft_21, sftm_13+field*sft_13
        _22, _23 = sftm_22+field*sft_22, sftm_23+field*sft_23
        _31, _32 = sftm_31+field*sft_31, sftm_32+field*sft_32
        _33 = sftm_33+field*sft_33
        _ij = (_11, _12, _13, _21, _22, _23, _31, _32, _33)
        cell = crystal.cell
        # k_loc = cell.calc_k_loc(index_h, index_k, index_l)
        t_ij = cell.calc_m_t(index_h, index_k, index_l)
        # FIXME: I would like to recheck the expression for T
        #        and expression SIGMA = T^T CHI T

        t_tr_ij = (t_ij[0], t_ij[3], t_ij[6],
                   t_ij[1], t_ij[4], t_ij[7],
                   t_ij[2], t_ij[5], t_ij[8])
        th_11, th_12, th_13, th_21, th_22, th_23, th_31, th_32, th_33 = \
            calc_mRmCmRT(t_tr_ij, _ij)

        # f_m_p_sin_sq = (field**2)*abs(0.5*(th_11*th_11.conjugate()+\
        #                th_22*th_22.conjugate())+th_12*th_12.conjugate())
        # f_m_p_cos_sq = (field**2)*abs(th_13*th_13.conjugate()+\
        #                 th_23*th_23.conjugate())
        # f_m_p_field = 0.5*field*(th_11+th_22)

        f_nucl_sq = abs(f_nucl*f_nucl.conjugate())
        f_m_p_sin_sq = abs(0.5 * (th_11 * th_11.conjugate()+th_22 *
                                  th_22.conjugate())+th_12 * th_12.conjugate())
        f_m_p_cos_sq = abs(th_13 * th_13.conjugate() +
                           th_23 * th_23.conjugate())
        f_m_p_field = 0.5 * (th_11+th_22)
        cross_sin = 2. * (f_nucl.real * f_m_p_field.real +
                          f_nucl.imag * f_m_p_field.imag)

        return f_nucl_sq, f_m_p_sin_sq, f_m_p_cos_sq, cross_sin, refln, refln_s
コード例 #6
0
ファイル: cl_2_tof.py プロジェクト: eandklahn/cryspy
    def calc_iint(self, index_h, index_k, index_l, crystal: Crystal,
                  flag_internal: bool = True):
        """Calculate the integrated intensity for h, k, l reflections.

        Arguments
        ---------
            - h, k, l: 1D numpy array of Miller indexes, dtype = int32
            - l_crystal: a list of Crystal objects of cryspy library
            - flag_internal: a flag to calculate or to use internal objects.
                   It should be True if user call the function.
                   It's True by default.

        Output
        ------
            - iint_u: 1D numpy array of integrated intensity up, dtype = float
            - iint_d: 1D numpy array of integrated intensity up, dtype = float
            - refln: ReflnL object of cryspy library (nuclear structure factor)
            - refln_s: ReflnSusceptibilityL object of cryspy library
              (nuclear structure factor)
        """
        if flag_internal:
            try:
                d_internal_val = self.d_internal_val
            except AttributeError:
                d_internal_val = {}
                self.d_internal_val = d_internal_val
        else:
            d_internal_val = {}
            self.d_internal_val = d_internal_val

        tof_parameters = self.tof_parameters
        try:
            field = tof_parameters.field
        except AttributeError:
            field = 0.

        try:
            diffrn_radiation = self.diffrn_radiation
            p_u = float(diffrn_radiation.polarization)
            p_d = (2.*float(diffrn_radiation.efficiency)-1)*p_u
        except AttributeError:
            p_u = 0.0
            p_d = 0.0

        try:
            if (not(flag_internal) | crystal.is_variables()):
                raise KeyError
            refln = d_internal_val[f"refln_{crystal.data_name:}"]
        except KeyError:
            refln = crystal.calc_refln(index_h, index_k, index_l,
                                       flag_internal=flag_internal)
            d_internal_val[f"refln_{crystal.data_name:}"] = refln
        f_nucl = refln.numpy_f_calc
        f_nucl_sq = abs(f_nucl*f_nucl.conjugate())

        if isinstance(crystal, Crystal):
            try:
                if (not(flag_internal) | crystal.is_variables()):
                    raise KeyError
                refln_s = d_internal_val[
                    f"refln_susceptibility_{crystal.data_name:}"]
            except KeyError:
                refln_s = crystal.calc_refln_susceptibility(
                    index_h, index_k, index_l, flag_internal=flag_internal)
                d_internal_val[f"refln_susceptibility_{crystal.data_name:}"] \
                    = refln_s

            sft_11 = refln_s.numpy_chi_11_calc
            sft_12 = refln_s.numpy_chi_12_calc
            sft_13 = refln_s.numpy_chi_13_calc
            sft_21 = refln_s.numpy_chi_21_calc
            sft_22 = refln_s.numpy_chi_22_calc
            sft_23 = refln_s.numpy_chi_23_calc
            sft_31 = refln_s.numpy_chi_31_calc
            sft_32 = refln_s.numpy_chi_32_calc
            sft_33 = refln_s.numpy_chi_33_calc

            sftm_11 = refln_s.numpy_moment_11_calc
            sftm_12 = refln_s.numpy_moment_12_calc
            sftm_13 = refln_s.numpy_moment_13_calc
            sftm_21 = refln_s.numpy_moment_21_calc
            sftm_22 = refln_s.numpy_moment_22_calc
            sftm_23 = refln_s.numpy_moment_23_calc
            sftm_31 = refln_s.numpy_moment_31_calc
            sftm_32 = refln_s.numpy_moment_32_calc
            sftm_33 = refln_s.numpy_moment_33_calc

            _11, _12 = sftm_11+field*sft_11, sftm_12+field*sft_12
            _21, _13 = sftm_21+field*sft_21, sftm_13+field*sft_13
            _22, _23 = sftm_22+field*sft_22, sftm_23+field*sft_23
            _31, _32 = sftm_31+field*sft_31, sftm_32+field*sft_32
            _33 = sftm_33+field*sft_33
            _ij = (_11, _12, _13, _21, _22, _23, _31, _32, _33)
            cell = crystal.cell

            # k_loc = cell.calc_k_loc(h, k, l)
            t_ij = cell.calc_m_t(index_h, index_k, index_l)
            # FIXME: I would like to recheck the expression for T
            #        and expression SIGMA = T^T CHI T
            t_tr_ij = (t_ij[0], t_ij[3], t_ij[6],
                       t_ij[1], t_ij[4], t_ij[7],
                       t_ij[2], t_ij[5], t_ij[8])
            th_11, th_12, th_13, th_21, th_22, th_23, th_31, th_32, th_33 = \
                calc_mRmCmRT(t_tr_ij, _ij)

            # fm_p_sq = (field**2)*abs(0.5*(th_11*th_11.conjugate()+
            #            th_22*th_22.conjugate())+th_12*th_12.conjugate())
            # fm_p_field = field*0.5*(th_11+th_22)
            fm_p_sq = abs(0.5 * (th_11 * th_11.conjugate() +
                                 th_22 * th_22.conjugate()) +
                          th_12 * th_12.conjugate())
            fm_p_field = 0.5*(th_11 + th_22)
            cross = 2.*(f_nucl.real*fm_p_field.real +
                        f_nucl.imag*fm_p_field.imag)

            iint_u = f_nucl_sq + fm_p_sq + p_u*cross
            iint_d = f_nucl_sq + fm_p_sq - p_d*cross

        elif isinstance(crystal, MagCrystal):
            try:
                if (not(flag_internal) | crystal.is_variables()):
                    raise KeyError
                f_mag_perp = d_internal_val[f"f_mag_perp_{crystal.data_name:}"]

            except KeyError:
                f_mag_perp = crystal.calc_f_mag_perp(index_h, index_k, index_l)
                d_internal_val[f"f_mag_perp_{crystal.data_name:}"] = f_mag_perp
            f_mag_perp_sq = abs(f_mag_perp*f_mag_perp.conjugate()).sum(axis=0)
            iint_u = f_nucl_sq + f_mag_perp_sq
            iint_d = f_nucl_sq + f_mag_perp_sq

        return iint_u, iint_d
コード例 #7
0
    def calc_susc_i(self, atom_site_susceptibility: AtomSiteSusceptibilityL):
        """Calculate susceptibility of point i.

        Parameters
        ----------
        atom_site_susceptibility : AtomSiteSusceptibilityL
            DESCRIPTION.

        Returns
        -------
        susc_11 : TYPE
            DESCRIPTION.
        susc_22 : TYPE
            DESCRIPTION.
        susc_33 : TYPE
            DESCRIPTION.
        susc_12 : TYPE
            DESCRIPTION.
        susc_13 : TYPE
            DESCRIPTION.
        susc_23 : TYPE
            DESCRIPTION.
        """
        numpy_basin_atom_label = self.numpy_basin_atom_label
        numpy_basin_atom_symop = self.numpy_basin_atom_symop
        if numpy_basin_atom_label is None:
            numpy_basin_atom_label = numpy.array(self.basin_atom_label,
                                                 dtype=str)
            numpy_basin_atom_symop = numpy.array(self.basin_atom_symop,
                                                 dtype=str)
            self.numpy_basin_atom_label = numpy_basin_atom_label
            self.numpy_basin_atom_symop = numpy_basin_atom_symop

        np_label = numpy.array(atom_site_susceptibility.label, dtype=str)
        np_chi_11 = numpy.array(atom_site_susceptibility.chi_11, dtype=float)
        np_chi_22 = numpy.array(atom_site_susceptibility.chi_22, dtype=float)
        np_chi_33 = numpy.array(atom_site_susceptibility.chi_33, dtype=float)
        np_chi_12 = numpy.array(atom_site_susceptibility.chi_12, dtype=float)
        np_chi_13 = numpy.array(atom_site_susceptibility.chi_13, dtype=float)
        np_chi_23 = numpy.array(atom_site_susceptibility.chi_23, dtype=float)

        l_r = []
        for symop in numpy_basin_atom_symop:
            r, b = transform_string_to_r_b(symop)
            r = r.astype(float)
            l_r.append((r[0, 0], r[0, 1], r[0, 2], r[1, 0], r[1, 1], r[1, 2],
                        r[2, 0], r[2, 1], r[2, 2]))
        np_r = numpy.array(l_r, dtype=float)
        np_r_11, np_r_12, np_r_13 = np_r[:, 0], np_r[:, 1], np_r[:, 2]
        np_r_21, np_r_22, np_r_23 = np_r[:, 3], np_r[:, 4], np_r[:, 5]
        np_r_31, np_r_32, np_r_33 = np_r[:, 6], np_r[:, 7], np_r[:, 8]

        susc_11 = numpy.zeros(numpy_basin_atom_label.size, dtype=float)
        susc_22 = numpy.zeros(numpy_basin_atom_label.size, dtype=float)
        susc_33 = numpy.zeros(numpy_basin_atom_label.size, dtype=float)
        susc_12 = numpy.zeros(numpy_basin_atom_label.size, dtype=float)
        susc_13 = numpy.zeros(numpy_basin_atom_label.size, dtype=float)
        susc_23 = numpy.zeros(numpy_basin_atom_label.size, dtype=float)

        for _l, chi_11, chi_22, chi_33, chi_12, chi_13, chi_23 in \
                zip(np_label, np_chi_11, np_chi_22, np_chi_33, np_chi_12,
                    np_chi_13, np_chi_23):
            f_1 = numpy_basin_atom_label == _l
            chi_ij = (chi_11, chi_12, chi_13, chi_12, chi_22, chi_23,
                      chi_13, chi_23, chi_33)
            c_11, c_12, c_13, c_21, c_22, c_23, c_31, c_32, c_33 = \
                calc_mRmCmRT((np_r_11[f_1], np_r_12[f_1], np_r_13[f_1],
                              np_r_21[f_1], np_r_22[f_1], np_r_23[f_1],
                              np_r_31[f_1], np_r_32[f_1], np_r_33[f_1]),
                             chi_ij)

            susc_11[f_1] = c_11
            susc_22[f_1] = c_22
            susc_33[f_1] = c_33
            susc_12[f_1] = c_12
            susc_13[f_1] = c_13
            susc_23[f_1] = c_23
        l_rs_i = self.l_rs_i
        l_c_11, l_c_22, l_c_33, l_c_12, l_c_13, l_c_23 = [], [], [], [], [], []
        for s_11, s_22, s_33, s_12, s_13, s_23, rs_i in zip(
                susc_11, susc_22, susc_33, susc_12, susc_13, susc_23, l_rs_i):
            r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33 = rs_i
            c_11, c_12, c_13, c_21, c_22, c_23, c_31, c_32, c_33 = \
                calc_mRmCmRT(rs_i, (s_11, s_12, s_13,
                                    s_12, s_22, s_23,
                                    s_13, s_23, s_33))
            ns = c_11.size
            l_c_11.append(c_11.sum()/float(ns))
            l_c_22.append(c_22.sum()/float(ns))
            l_c_33.append(c_33.sum()/float(ns))
            l_c_12.append(c_12.sum()/float(ns))
            l_c_13.append(c_13.sum()/float(ns))
            l_c_23.append(c_23.sum()/float(ns))

        chi_11 = numpy.array(l_c_11, dtype=float)
        chi_22 = numpy.array(l_c_22, dtype=float)
        chi_33 = numpy.array(l_c_33, dtype=float)
        chi_12 = numpy.array(l_c_12, dtype=float)
        chi_13 = numpy.array(l_c_13, dtype=float)
        chi_23 = numpy.array(l_c_23, dtype=float)
        return chi_11, chi_22, chi_33, chi_12, chi_13, chi_23