コード例 #1
0
ファイル: expand.py プロジェクト: Brainsciences/luminoso
def expand_study(study_name):
    study = StudyDirectory(study_name).get_study()
    theblend, concepts = study.get_assoc_blend()
    U, S, V = theblend.normalize_all().svd(k=50)
    doc_rows = divisi2.aligned_matrix_multiply(study.get_documents_matrix(), U)
    projections = U.extend(doc_rows)
    spectral = divisi2.reconstruct_activation(projections, S, post_normalize=True)
    divisi2.save(spectral, study_name+'/Results/expanded.rmat')
コード例 #2
0
ファイル: expand.py プロジェクト: vipmath/luminoso
def expand_study(study_name):
    study = StudyDirectory(study_name).get_study()
    theblend, concepts = study.get_assoc_blend()
    U, S, V = theblend.normalize_all().svd(k=50)
    doc_rows = divisi2.aligned_matrix_multiply(study.get_documents_matrix(), U)
    projections = U.extend(doc_rows)
    spectral = divisi2.reconstruct_activation(projections,
                                              S,
                                              post_normalize=True)
    divisi2.save(spectral, study_name + '/Results/expanded.rmat')
コード例 #3
0
ファイル: study.py プロジェクト: Brainsciences/luminoso
 def analyze(self):
     # TODO: make it possible to blend multiple directories
     self._documents_matrix = None
     docs, projections, Sigma = self.get_eigenstuff()
     magnitudes = np.sqrt(np.sum(np.asarray(projections*projections), axis=1))
     if self.is_associative():
         spectral = divisi2.reconstruct_activation(projections, Sigma, post_normalize=True, offset=0.0001)
     else:
         spectral = divisi2.reconstruct_similarity(projections, Sigma,
         post_normalize=True, offset=0.0001)
     self._step('Calculating stats...')
     stats = self.compute_stats(docs, spectral)
     
     results = StudyResults(self, docs, spectral.left, spectral, magnitudes, stats)
     return results
コード例 #4
0
    def analyze(self):
        # TODO: make it possible to blend multiple directories
        self._documents_matrix = None
        docs, projections, Sigma = self.get_eigenstuff()
        magnitudes = np.sqrt(
            np.sum(np.asarray(projections * projections), axis=1))
        if self.is_associative():
            spectral = divisi2.reconstruct_activation(projections,
                                                      Sigma,
                                                      post_normalize=True,
                                                      offset=0.0001)
        else:
            spectral = divisi2.reconstruct_similarity(projections,
                                                      Sigma,
                                                      post_normalize=True,
                                                      offset=0.0001)
        self._step('Calculating stats...')
        stats = self.compute_stats(docs, spectral)

        results = StudyResults(self, docs, spectral.left, spectral, magnitudes,
                               stats)
        return results
コード例 #5
0
ファイル: Data.py プロジェクト: BrunoMCBraga/EADW
 def make_svd(self):
     matrix = divisi2.make_sparse(self.data).normalize_all()
     self.U,self.s,self.V = matrix.svd(k=14)
     self.predictions = divisi2.reconstruct_activation(self.V, self.s)
     del self.data
     print "init end"
コード例 #6
0
ファイル: divisi.py プロジェクト: joulesm/Interest-Networks
from csc import divisi2

matrix = divisi2.network.conceptnet_matrix('en')

# run SVD
U, S, V = matrix.normalize_all().svd(k = 100)

# get similar concepts
sim = divisi2.reconstruct_similarity(U, S, post_normalize = False)
sim.row_named('teach').top_items(10)
sim.entry_named('horse', 'cow')

# related concepts, spreading activation
assoc = divisi2.network.conceptnet_assoc('en')
U, S, _ = assoc.svd(k = 100)
spread = divisi2.reconstruct_activation(U, S)

spread.entry_named('cat', 'dog')
spread.row_named('think').top_items()

# separating out interests that don't exist in Divisi
allInts = json.loads(open('allInterests.json','r').read())
topInts = {}
for interest in allInts:
	if allInts[interest] > 2:
		topInts[interest] = allInts[interest]
# fix has words that need adjusting to find in Divisi
fix = []
found = []
for interest in topInts:
	try: