コード例 #1
0
def run_background_trials(args):
    """Run the background trials for the stacked nova analysis

    :type args: dict-like
    :param args: Command line arguments or dict with keys needed for analysis
    """
    delta_t = args.deltaT
    delta_t_days = delta_t / 86400.

    ana_dir = cy.utils.ensure_dir('/data/user/apizzuto/csky_cache/greco_ana')
    greco_ana = cy.get_analysis(
        cy.selections.repo,
        'version-002-p10',
        cy.selections.GRECOOnlineDataSpecs.GRECO_IC86_2012_2019,
        dir=ana_dir)
    conf = {
        'ana': greco_ana,
        'extended': True,
        'space': "ps",
        'time': "transient",
        'sig': 'transient'}

    only_gamma = not args.all_nova
    weighting_scheme = args.weighting
    src, sample_str = get_sources(only_gamma, weighting_scheme, delta_t_days)

    cy.CONF['src'] = src
    cy.CONF['mp_cpus'] = 5

    tr = cy.get_trial_runner(conf, ana=greco_ana, src=src)
    n_trials = args.ntrials

    bg_trials = tr.get_many_fits(n_trials, seed=args.seed, logging=False)

    filename = '/data/user/apizzuto/Nova/csky_trials/stacking_sens_res/bg/' \
        + '{}_delta_t_{:.2e}_seed_{}.npy'.format(
            sample_str, delta_t, args.seed)
    np.save(filename, bg_trials.as_array)
################################################################################
wt=[]
for j in range(len(flux_used)):
    if equal_weights:
        wt.append(1.0)
    else:
        wt.append(flux_used[j])
wt=wt/np.sum(wt)
print("\n WEIGHTS USED FOR THIS RUN:\n %s \n"%(wt))

################################################################################
# CSKY SETUP
################################################################################
ana_dir = cy.utils.ensure_dir(ana_dir_path)
repo = cy.selections.repo
ana = cy.get_analysis(cy.selections.repo, cy.selections.PSDataSpecs.ps_10yr, dir=ana_dir)
#ana.save(ana_dir) #Un-comment if you are running the analysis for the first time
cy.CONF['ana'] = ana
cy.CONF['mp_cpus'] = 2

################################################################################
# CSKY SOURCE DESCRIPTION
################################################################################
src = cy.utils.Sources(ra=src_ra,dec=src_dec,weight=wt,deg=False)
flux    = cy.hyp.PowerLawFlux(gamma=index,norm=E0)

################################################################################
# BACKGROUND
################################################################################
#conf = dict(fitter_args = _fmin_method='bfgs')
timer = cy.timing.Timer()
コード例 #3
0
                    type=int,
                    default=10000,
                    help="Number of background trials")
parser.add_argument('--ntrials_sig',
                    type=int,
                    default=500,
                    help='Number of trials per signal strength')
args = parser.parse_args()

delta_t = args.deltaT
delta_t_days = delta_t / 86400.

ana_dir = cy.utils.ensure_dir('/data/user/apizzuto/csky_cache/greco_ana')
greco_ana = cy.get_analysis(
    cy.selections.repo,
    'version-002-p10',
    cy.selections.GRECOOnlineDataSpecs.GRECO_IC86_2012_2019,
    dir=ana_dir)

conf = {
    'ana': greco_ana,
    'extended': True,
    'space': "ps",
    'time': "transient",
    'sig': 'transient'
}

result_dict = {'dec': [], 'sens': [], 'sens_nsig': []}

ra = 0.
mjd_start = 57200.
コード例 #4
0
def run_all_signal_trials(args):
    r"""Look at output background trials and run the signal
    trials for a stacked nova analysis
    """
    delta_t = args.deltaT
    delta_t_days = delta_t / 86400.

    ana_dir = cy.utils.ensure_dir('/data/user/apizzuto/csky_cache/greco_ana')
    greco_ana = cy.get_analysis(
        cy.selections.repo,
        'version-002-p10',
        cy.selections.GRECOOnlineDataSpecs.GRECO_IC86_2012_2019,
        dir=ana_dir)
    conf = {
        'ana': greco_ana,
        'extended': True,
        'space': "ps",
        'time': "transient",
        'sig': 'transient'
    }

    only_gamma = not args.all_nova
    print('only', only_gamma)
    print('all', args.all_nova)
    print('~all', ~args.all_nova)
    weighting_scheme = args.weighting
    src, sample_str = get_sources(only_gamma, weighting_scheme, delta_t_days)

    cy.CONF['src'] = src
    cy.CONF['mp_cpus'] = 5

    def ndarray_to_Chi2TSD(trials):
        return cy.dists.Chi2TSD(cy.utils.Arrays(trials))

    bg = cy.bk.get_all(
        '/data/user/apizzuto/Nova/csky_trials/stacking_sens_res/bg/',
        '{}_delta_t_{:.2e}_seed_*.npy'.format(sample_str, delta_t),
        merge=np.concatenate,
        post_convert=ndarray_to_Chi2TSD)

    tr = cy.get_trial_runner(
        conf,
        ana=greco_ana,
        src=src,
        inj_conf={'flux': cy.hyp.PowerLawFlux(args.index)})

    result = {}

    if delta_t < 1e3:
        n_sig_step = 5
    elif delta_t <= 86400. and args.index <= 2.5:
        n_sig_step = 7
    elif delta_t <= 86400:
        n_sig_step = 15
    elif args.index <= 2.5:
        n_sig_step = 15
    else:
        n_sig_step = 25

    ########################################################################
    # SENSITIVITY CALCULATION
    ########################################################################
    beta = 0.9
    sensitivity = tr.find_n_sig(bg.median(),
                                beta,
                                batch_size=args.ntrials_sig,
                                n_sig_step=n_sig_step,
                                max_batch_size=0,
                                logging=True,
                                n_bootstrap=1)

    sensitivity['E2dNdE'] = tr.to_E2dNdE(sensitivity, E0=1., unit=1e3)

    ########################################################################
    # DISCOVERY POTENTIAL CALC
    ########################################################################
    thresh_ts = bg.isf_nsigma(5.)
    beta = 0.5  # beta = 0.5
    discovery = tr.find_n_sig(thresh_ts,
                              beta,
                              batch_size=args.ntrials_sig,
                              n_sig_step=n_sig_step,
                              max_batch_size=0,
                              logging=True,
                              n_bootstrap=1)
    discovery['E2dNdE'] = tr.to_E2dNdE(discovery, E0=1., unit=1e3)
    discovery['nsigma'] = 5.
    discovery['CL'] = beta

    ########################################################################
    # FIT BIAS TRIALS
    ########################################################################
    n_sigs = np.r_[:201:10]
    trials = [
        tr.get_many_fits(int(args.ntrials_sig / 2),
                         n_sig=n_sig,
                         logging=False,
                         seed=n_sig) for n_sig in n_sigs
    ]
    for (n_sig, t) in zip(n_sigs, trials):
        t['ntrue'] = np.repeat(n_sig, len(t))
    allt = cy.utils.Arrays.concatenate(trials)

    result['bg'] = bg
    result['sensitivity'] = sensitivity
    result['discovery'] = discovery
    result['fit'] = allt
    result['settings'] = args
    result['source_info'] = {'ra': src.ra, 'dec': src.dec, 'mjd': src.mjd}

    with open(
            '/data/user/apizzuto/Nova/csky_trials/stacking_sens_res/' +
            'signal_results/' + '{}_delta_t_{:.2e}_gamma_{}_.pkl'.format(
                sample_str, delta_t, args.index), 'wb') as f:
        pickle.dump(result, f)
コード例 #5
0
    BpBest = BpArr.min()
    kBest = BpArr.argmin() + 1
    pThresh = pSorted[kBest - 1]
    if returnArray:
        return pThresh, kBest, BpBest, BpArr
    else:
        return pThresh, kBest, BpBest


def ndarray_to_Chi2TSD(trials):
    return cy.dists.Chi2TSD(cy.utils.Arrays(trials))


repo = selections.Repository()
with time('ana setup'):
    ana = cy.get_analysis(cy.selections.repo,
                          cy.selections.GFUDataSpecs.gfu_IC86)
    cy.CONF['ana'] = ana

min_data_set = ana.mjd_min
max_data_set = ana.mjd_max
# Load the complete GRB list
GRB_main_list = np.genfromtxt("GRBs_withoutheader.txt",
                              dtype=[('GRB_name', 'S20'),
                                     ('GRB_name_Fermi', 'S20'),
                                     ('t_trigger', 'S20'), ('ra', 'f4'),
                                     ('decl', 'float'), ('pos_error', 'f4'),
                                     ('T90', 'f4'), ('T90_error', 'f4'),
                                     ('T90_start', 'S20'), ('fluence', 'f4'),
                                     ('fluence_error', 'f4'),
                                     ('redshift', 'f4'), ('T100', 'f4'),
                                     ('GBM_located', 'bool'), ('mjd', 'f4')])
コード例 #6
0
def run_differential_sens(args):
    r"""Look at output background trials and run the signal
    trials for a stacked nova analysis
    """
    delta_t = args.deltaT
    delta_t_days = delta_t / 86400.

    ana_dir = cy.utils.ensure_dir('/data/user/apizzuto/csky_cache/greco_ana')
    greco_ana = cy.get_analysis(
        cy.selections.repo,
        'version-002-p10',
        cy.selections.GRECOOnlineDataSpecs.GRECO_IC86_2012_2019,
        dir=ana_dir)
    conf = {
        'ana': greco_ana,
        'extended': True,
        'space': "ps",
        'time': "transient",
        'sig': 'transient'
    }

    only_gamma = not args.all_nova
    weighting_scheme = args.weighting
    src, sample_str = get_sources(only_gamma, weighting_scheme, delta_t_days)

    cy.CONF['src'] = src
    cy.CONF['mp_cpus'] = 5

    def ndarray_to_Chi2TSD(trials):
        return cy.dists.Chi2TSD(cy.utils.Arrays(trials))

    bg = cy.bk.get_all(
        '/data/user/apizzuto/Nova/csky_trials/stacking_sens_res/bg/',
        '{}_delta_t_{:.2e}_seed_*.npy'.format(sample_str, delta_t),
        merge=np.concatenate,
        post_convert=ndarray_to_Chi2TSD)

    Ebins = 10**np.r_[0.:4.1:1.0]
    trs = [
        cy.get_trial_runner(conf,
                            ana=greco_ana,
                            src=src,
                            flux=cy.hyp.PowerLawFlux(2.0,
                                                     energy_range=(Emin,
                                                                   Emax)))
        for (Emin, Emax) in zip(Ebins[:-1], Ebins[1:])
    ]

    if delta_t < 1e3:
        n_sig_step = 5
    elif delta_t <= 86400.:
        n_sig_step = 7
    elif delta_t <= 86400:
        n_sig_step = 15
    else:
        n_sig_step = 15

    result = {}

    for ii, tr in enumerate(trs):
        try:
            #################################################################
            # SENSITIVITY CALCULATION
            #################################################################
            beta = 0.9
            sensitivity = tr.find_n_sig(bg.median(),
                                        beta,
                                        batch_size=args.ntrials_sig,
                                        n_sig_step=n_sig_step,
                                        max_batch_size=0,
                                        logging=True,
                                        n_bootstrap=1)

            sensitivity['E2dNdE'] = tr.to_E2dNdE(sensitivity,
                                                 E0=Ebins[ii] / 1e3,
                                                 unit=1e3)
            tmp_key = f'sensitivity_{Ebins[ii]:.1f}_{Ebins[ii+1]:.1f}'
            result[tmp_key] = sensitivity
        except Exception as e:
            print(f"Could not do energy range {Ebins[ii]} to {Ebins[ii+1]}")

    result['bg'] = bg
    result['settings'] = args
    result['source_info'] = {
        'ra': list(src.ra),
        'dec': list(src.dec),
        'mjd': list(src.mjds)
    }

    with open(
            '/data/user/apizzuto/Nova/csky_trials/stacking_sens_res/' +
            'differential_sens/' +
            '{}_delta_t_{:.2e}.pkl'.format(sample_str, delta_t), 'wb') as f:
        pickle.dump(result, f)
コード例 #7
0
        
        trials_dir = cy.utils.ensure_dir('/data/user/mcampana/analysis/Blazar_1FLE/trials_Erange_{}-{}'.format(ethresh_low, ethresh_high))
        
    version = 'version-003-p02'
    
elif dSetName == 'ps-v4':
    selection = cy.selections.PSDataSpecs.ps_v4
    trials_dir = cy.utils.ensure_dir('/data/user/mcampana/analysis/Blazar_1FLE/trials_psv4')
    version = 'version-004-p00'

print('Getting analysis arrays...')
#Create analysis with data selection (saved in working dir)
#ana = cy.get_analysis(cy.selections.repo, selection)
#ana.save('./')
ana_dir = cy.utils.ensure_dir('/data/user/mcampana/analysis/Blazar_1FLE/subanalyses/{}'.format(dSetName))
ana = cy.get_analysis(cy.selections.repo, version, selection, dir=ana_dir)

#Trial save and load directories
sig_dir = cy.utils.ensure_dir('{}/sig'.format(trials_dir))
if not E_cut:
    bg_dir = cy.utils.ensure_dir('{}/bg'.format(trials_dir))
elif E_cut:
    bg_dir = cy.utils.ensure_dir('/data/user/mcampana/analysis/Blazar_1FLE/trials_u1FLE/bg')

#=========================================================
#       FUNCTION DEFINITIONS 
#=========================================================

#Do BG Trials
def bg_trials():