from sklearn.tree import DecisionTreeClassifier from skmultiflow.trees import HoeffdingTree # Select streams and methods streams = h.realstreams() print(len(streams)) ob = OnlineBagging(n_estimators=20, base_estimator=HoeffdingTree(split_criterion='hellinger')) oob = OOB(n_estimators=20, base_estimator=HoeffdingTree(split_criterion='hellinger')) uob = UOB(n_estimators=20, base_estimator=HoeffdingTree(split_criterion='hellinger')) ros_knorau2 = SEA(base_estimator=StratifiedBagging( base_estimator=HoeffdingTree(split_criterion='hellinger'), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2") cnn_knorau2 = SEA(base_estimator=StratifiedBagging( base_estimator=HoeffdingTree(split_criterion='hellinger'), random_state=42, oversampler="CNN"), oversampled="CNN", des="KNORAU2") ros_knorae2 = SEA(base_estimator=StratifiedBagging( base_estimator=HoeffdingTree(split_criterion='hellinger'), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAE2") cnn_knorae2 = SEA(base_estimator=StratifiedBagging(
from skmultiflow.trees import HoeffdingTree if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.toystreams(random_state) print(len(streams)) sea = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42)) knorau1 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42), des="KNORAU1") knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42), des="KNORAU2") knorae1 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42), des="KNORAE1") knorae2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42), des="KNORAE2") clfs = (sea, knorau1, knorau2, knorae1, knorae2)
# Select streams and methods streams = h.moa_streams() print(len(streams)) rea = REA(base_classifier=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42), number_of_classifiers=5) cds = LearnppCDS(base_classifier=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42), number_of_classifiers=5) nie = LearnppNIE(base_classifier=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42), number_of_classifiers=5) ouse = OUSE(base_classifier=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42), number_of_classifiers=5) kmc = KMeanClustering(base_classifier=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42), number_of_classifiers=5) ros_knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2") cnn_knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42, oversampler="CNN"), oversampled="CNN", des="KNORAU2") ros_knorae2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAE2") cnn_knorae2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42, oversampler = "CNN"), oversampled="CNN" ,des="KNORAE2") clfs = (rea, ouse, kmc, cds, nie, ros_knorau2, cnn_knorau2, ros_knorae2, cnn_knorae2) # Define worker def worker(i, stream_n): stream = streams[stream_n] key = list(streams.keys())[i] cclfs = [clone(clf) for clf in clfs] print("Starting stream %i/%i" % (i + 1, len(streams)))
if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.toystreams(random_state) print(len(streams)) sea = SEA(base_estimator=StratifiedBagging(base_estimator=HoeffdingTree( split_criterion='hellinger'), random_state=42)) knorau1 = SEA(base_estimator=StratifiedBagging( base_estimator=HoeffdingTree(split_criterion='hellinger'), random_state=42), des="KNORAU1") knorau2 = SEA(base_estimator=StratifiedBagging( base_estimator=HoeffdingTree(split_criterion='hellinger'), random_state=42), des="KNORAU2") knorae1 = SEA(base_estimator=StratifiedBagging( base_estimator=HoeffdingTree(split_criterion='hellinger'), random_state=42), des="KNORAE1") knorae2 = SEA(base_estimator=StratifiedBagging( base_estimator=HoeffdingTree(split_criterion='hellinger'),
from sklearn.svm import SVC if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.toystreams(random_state) print(len(streams)) none_knorau1 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42, oversampler="None"), oversampled="None", des="KNORAU1") rus_knorau1 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42, oversampler="RUS"), oversampled="RUS", des="KNORAU1") cnn_knorau1 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42, oversampler="CNN"), oversampled="CNN", des="KNORAU1") none_knorae1 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42, oversampler="None"), oversampled="None", des="KNORAE1") rus_knorae1 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42, oversampler="RUS"), oversampled="RUS", des="KNORAE1") cnn_knorae1 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42, oversampler = "CNN"), oversampled="CNN" ,des="KNORAE1") clfs = (none_knorau1, rus_knorau1, cnn_knorau1, none_knorae1, rus_knorae1, cnn_knorae1) # Define worker def worker(i, stream_n):
from sklearn.neural_network import MLPClassifier if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.toystreams(random_state) print(len(streams)) gnb = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42)) ht = SEA(base_estimator=StratifiedBagging(base_estimator=HoeffdingTree(), random_state=42)) clfs = (gnb, ht) # Define worker def worker(i, stream_n): stream = streams[stream_n] cclfs = [clone(clf) for clf in clfs] print("Starting stream %i/%i" % (i + 1, len(streams))) eval = TestThenTrain(metrics=( balanced_accuracy_score, geometric_mean_score_1, f1_score,
if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.toystreams(random_state) print(len(streams)) none_knorau1 = SEA(base_estimator=StratifiedBagging( base_estimator=KNeighborsClassifier(weights='distance'), random_state=42, oversampler="None"), oversampled="None", des="KNORAU1") ros_knorau1 = SEA(base_estimator=StratifiedBagging( base_estimator=KNeighborsClassifier(weights='distance'), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU1") b2_knorau1 = SEA(base_estimator=StratifiedBagging( base_estimator=KNeighborsClassifier(weights='distance'), random_state=42, oversampler="B2"), oversampled="B2", des="KNORAU1") none_knorae2 = SEA(base_estimator=StratifiedBagging(
if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.toystreams(random_state) print(len(streams)) none_knorau2 = SEA(base_estimator=StratifiedBagging( base_estimator=GaussianNB(), random_state=42, oversampler="None"), oversampled="None", des="KNORAU2") ros_knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2") b2_knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42, oversampler="B2"), oversampled="B2", des="KNORAU2") none_knorae2 = SEA(base_estimator=StratifiedBagging( base_estimator=GaussianNB(), random_state=42, oversampler="None"), oversampled="None", des="KNORAE2")
recall, specificity ) import sys from sklearn.base import clone from sklearn.tree import DecisionTreeClassifier from skmultiflow.trees import HoeffdingTree import time import matplotlib.pyplot as plt # Select streams and methods streams = h.timestream(100) print(len(streams)) ros_knorau2_3 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2", n_estimators=3) ros_knorau2_5 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42, oversampler="CNN"), oversampled="CNN", des="KNORAU2", n_estimators=5) ros_knorau2_10 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2", n_estimators=10) ros_knorau2_15 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2", n_estimators=15) ros_knorau2_30 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( ), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2", n_estimators=30) # cnn_knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( # ), random_state=42, oversampler="CNN"), oversampled="CNN", des="KNORAU2") # ros_knorae2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( # ), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAE2") # cnn_knorae2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB( # ), random_state=42, oversampler="CNN"), oversampled="CNN", des="KNORAE2")
from sklearn.neighbors import KNeighborsClassifier if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.toystreams(random_state) print(len(streams)) sea = SEA(base_estimator=StratifiedBagging( base_estimator=KNeighborsClassifier(weights='distance'), random_state=42)) knorau1 = SEA(base_estimator=StratifiedBagging( base_estimator=KNeighborsClassifier(weights='distance'), random_state=42), des="KNORAU1") knorau2 = SEA(base_estimator=StratifiedBagging( base_estimator=KNeighborsClassifier(weights='distance'), random_state=42), des="KNORAU2") knorae1 = SEA(base_estimator=StratifiedBagging( base_estimator=KNeighborsClassifier(weights='distance'), random_state=42), des="KNORAE1") knorae2 = SEA(base_estimator=StratifiedBagging( base_estimator=KNeighborsClassifier(weights='distance'), random_state=42), des="KNORAE2") clfs = (sea, knorau1, knorau2, knorae1, knorae2) # Define worker
from sklearn.svm import SVC if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.toystreams(random_state) print(len(streams)) sea = SEA(base_estimator=StratifiedBagging( base_estimator=SVC(probability=True, random_state=42), random_state=42)) knorau1 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42), des="KNORAU1") knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42), des="KNORAU2") knorae1 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42), des="KNORAE1") knorae2 = SEA(base_estimator=StratifiedBagging(base_estimator=SVC( probability=True, random_state=42), random_state=42),
cds = LearnppCDS(base_classifier=StratifiedBagging(base_estimator=GaussianNB(), random_state=42), number_of_classifiers=5) nie = LearnppNIE(base_classifier=StratifiedBagging(base_estimator=GaussianNB(), random_state=42), number_of_classifiers=5) ouse = OUSE(base_classifier=StratifiedBagging(base_estimator=GaussianNB(), random_state=42), number_of_classifiers=5) kmc = KMeanClustering(base_classifier=StratifiedBagging( base_estimator=GaussianNB(), random_state=42), number_of_classifiers=5) sea = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42), n_estimators=5, metric=roc_auc_score) ros_knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2") stream = StreamGenerator(n_chunks=250, chunk_size=200, random_state=1410, n_drifts=1, weights=[0.9, 0.1]) eval = TestThenTrain(metrics=(geometric_mean_score_1))