def convert_schwab_pos_file(infile, file=None): '''Convert Positions export (.CSV) from Schwab to Fidelity format.''' stamp = infile.split('_')[-1] stamp = stamp.split('.')[0] with open(infile) as csv: acct_num = csv.readline().split()[4] acct_num = acct_num.replace('XXXX', os.path.basename(infile)[:4]) outfile = 'fi' + acct_num + '_' + stamp + '.pos' def pos(values, outfile, acct_num=acct_num, **kwargs): symbol = values[0] description = values[1][:40] quantity = float(values[2]) # values[3] == price # values[4] == price change $ # values[5] == price change % # values[6] == market value # values[7] == day change $ # values[8] == day change % # values[9] == Cost Basis # values[10] == Gain/Loss $ # values[11] == Gain/Loss % # values[12] == Reinvest Dividends? # values[13] == Capital Gains? # values[14] == % Of Account # values[15] == Security Type #"SPY","S P D R S&P 500 ETF TR EXPIRES 01/22/2118","117","$204.50","-$0.48","-0.23%","$23,926.50","-$56.16","-0.23%","$17,508.94","$6,417.56","+36.65%","No","--","62.16%","ETFs & Closed End Funds", #"BUFBX","BUFFALO FLEXIBLE INCOME FUND","961.733","$14.32","-$0.02","-0.14%","$13,772.02","-$19.23","-0.14%","$12,600.00","$1,172.02","+9.3%","No","No","35.78%","Mutual Fund", #"Cash & Money Market","--","--","--","--","--","$796.11","$0.00","0%","--","--","--","--","--","2.07%","Cash and Money Market", #"Account Total","--","--","--","--","--","$38,494.63","-$75.39","-0.2%","$30,108.94","$7,589.58","+25.21%","--","--","--","--", sec_type = '' #values[2] and 'mf' # Mutual Funds only from TIAA-CREF symbol = values[3].lower() quantity = float(values[4]) amount = float(values[5]) # Other values acct_type = 1 # Cash account cusip = '' trade_date_quantity = settle_date_quantity = quantity close_price = '' # >15.05f dts = os.path.basename(outfile)[2:8] date_str = '20{}{}'.format(dts[-2:], dts[:-2]) # Convert MMDDYY to YYYYMMDD factor = face_amount = clean_price = factored = '' option_symbol = '' rep1 = '000' # Apparently C&D-specific values rep2 = 'J62' # Apparently C&D-specific values # NOTE: Verify the need for closing_price, cusip, and description output = ( '{acct_num:14} {acct_type:1d} {cusip:9} {symbol:9} ' '{trade_date_quantity:>15.05f} {settle_date_quantity:>15.05f} ' '{close_price:15} {description:40} {date_str:8} ' '{factor:17} {face_amount:18} {clean_price:18} {factored:1} ' '{sec_type:2} {option_symbol:30} {rep1:3}{rep2:3}') return output.format(**locals()) return convert_csv(infile, outfile, pos, file, mode='a', headers=3)
def get_headers(self,file): ''' given a csv file, it will return the headers (first row), as a list ''' with open(file, 'r') as csv: header_string = csv.readline() return header_string.split(',')
def convert_schwab_pos_file(infile, file=None): '''Convert Positions export (.CSV) from Schwab to Fidelity format.''' stamp = infile.split('_')[-1] stamp = stamp.split('.')[0] with open(infile) as csv: acct_num = csv.readline().split()[4] acct_num = acct_num.replace('XXXX', os.path.basename(infile)[:4]) outfile = 'fi' + acct_num + '_' + stamp + '.pos' def pos(values, outfile, acct_num=acct_num, **kwargs): symbol = values[0] description = values[1][:40] quantity = float(values[2]) # values[3] == price # values[4] == price change $ # values[5] == price change % # values[6] == market value # values[7] == day change $ # values[8] == day change % # values[9] == Cost Basis # values[10] == Gain/Loss $ # values[11] == Gain/Loss % # values[12] == Reinvest Dividends? # values[13] == Capital Gains? # values[14] == % Of Account # values[15] == Security Type #"SPY","S P D R S&P 500 ETF TR EXPIRES 01/22/2118","117","$204.50","-$0.48","-0.23%","$23,926.50","-$56.16","-0.23%","$17,508.94","$6,417.56","+36.65%","No","--","62.16%","ETFs & Closed End Funds", #"BUFBX","BUFFALO FLEXIBLE INCOME FUND","961.733","$14.32","-$0.02","-0.14%","$13,772.02","-$19.23","-0.14%","$12,600.00","$1,172.02","+9.3%","No","No","35.78%","Mutual Fund", #"Cash & Money Market","--","--","--","--","--","$796.11","$0.00","0%","--","--","--","--","--","2.07%","Cash and Money Market", #"Account Total","--","--","--","--","--","$38,494.63","-$75.39","-0.2%","$30,108.94","$7,589.58","+25.21%","--","--","--","--", sec_type = '' #values[2] and 'mf' # Mutual Funds only from TIAA-CREF symbol = values[3].lower() quantity = float(values[4]) amount = float(values[5]) # Other values acct_type = 1 # Cash account cusip = '' trade_date_quantity = settle_date_quantity = quantity close_price = '' # >15.05f dts = os.path.basename(outfile)[2:8] date_str = '20{}{}'.format(dts[-2:], dts[:-2]) # Convert MMDDYY to YYYYMMDD factor = face_amount = clean_price = factored = '' option_symbol = '' rep1 = '000' # Apparently C&D-specific values rep2 = 'J62' # Apparently C&D-specific values # NOTE: Verify the need for closing_price, cusip, and description output = ('{acct_num:14} {acct_type:1d} {cusip:9} {symbol:9} ' '{trade_date_quantity:>15.05f} {settle_date_quantity:>15.05f} ' '{close_price:15} {description:40} {date_str:8} ' '{factor:17} {face_amount:18} {clean_price:18} {factored:1} ' '{sec_type:2} {option_symbol:30} {rep1:3}{rep2:3}') return output.format(**locals()) return convert_csv(infile, outfile, pos, file, mode='a', headers=3)
def load_csv(filepath): """Read and convert a CSV file in the prettytable format.""" csv = open(filepath, 'r') for i in range(2): csv.readline() # skip the first two lines lin = csv.readline() f, p_0, p_1 = [], [], [] while lin != "": if lin.count('+') == 5: pass else: dat = lin.split('|') f_i = float(dat[1].strip()) p0_i = float(dat[2].strip()) p1_i = float(dat[3].strip()) f.append(f_i) p_0.append(p0_i) p_1.append(p1_i) lin = csv.readline() csv.close() return f, p_0, p_1
def getOffsetsAndSensitivity(boardNo): i=1 fileName=boardNo+'.csv' csv=open(fileName, 'r') hdr = csv.readline() hdr = hdr.strip().split(',') d = defaultdict(list) for line in csv: row = line.strip().split(',') for i in range(len(hdr)): key = str(hdr[i]) value = str(row[i]) d[key].append(value) csv.close() return d
def _get_row_by_line_num(self, line_num): csv = codecs.open(self.file.name, self.file.mode, self.file.encoding) count = 0 while True: line = csv.readline() count += 1 if count == line_num + 1: break delimiter = '%s%s%s' % (self.dialect.quotechar, self.dialect.delimiter, self.dialect.quotechar) line = line.lstrip(self.dialect.quotechar).rstrip(self.dialect.quotechar) line = line.split(delimiter) line_dict = {} for field in self.data.fieldnames: index = self.data.fieldnames.index(field) line_dict[field] = line[index] return line_dict
def getOffsetsAndSensitivity(self): # i=1 fileName = self.O3boardNo + '.csv' csv = open(fileName, 'r') hdr = csv.readline() hdr = hdr.strip().split(',') self.gasOffsetsAndSensitivity = defaultdict(list) lines = csv.readlines() for line in lines: row = line.strip().split(',') for i in range(1, len(hdr)): key = str(hdr[i]) value = str(row[i]) self.gasOffsetsAndSensitivity[key].append(value) csv.close() return self.gasOffsetsAndSensitivity
def read_csv2(path): csv = open(path, 'r') data = [] keys = [] # collect keys from 1st line and init data for i in csv.readline().rstrip().split(','): keys.append(i) # fill data with values for i in csv.readlines(): obj = {} for key, val in zip(keys, i.rstrip().split(',')): if re.match(r'\d*\.?\d+', val): obj[key] = float(val) else: obj[key] = val data.append(obj) return data
ax.imshow(img) for (x1,y1,x2,y2) in orig_coords: rect = Rectangle((x1,y1),x2-x1, y2-y1, edgecolor='r', fill=False) ax.add_patch(rect) plt.show() def test_crop_results(img, orig_coords, region, percent): print(orig_coords) cropped_img, cropped_coords = crop(img, orig_coords, region, percent) print(cropped_coords) show_img_with_fractions(img, orig_coords, cropped_img=cropped_img, cropped_coords=cropped_coords) from PIL import Image csv = open(CSV_SAVE_PATH + '\\new_validation_' + extension[1:] + '.csv', 'r') img_path, x1, y1, x2, y2, _ = csv.readline().split(',') orig_coords = np.array([[int(x1), int(y1), int(x2), int(y2)]]) while True: new_img_path, x1, y1, x2, y2, _ = csv.readline().split(',') if new_img_path != img_path: break orig_coords = np.append(orig_coords, [[int(x1), int(y1), int(x2), int(y2)]], axis=0) if __name__ == '__main__': TL = 1 ML = 2 BR = 3 TM = 4 MM = 5 BM = 6 TR = 7
import os import csv import fileinput dirs = os.listdir(os.getcwd()+'/csv') for f in dirs: csv=open(f,'r') print csv.readline()
def readdata(fname): print(f"readdata: reading from File: {fname}") csv = open(fname, mode="r") csv.readline() return csv