if args.file: inf = open(args.file, "r") else: inf = sys.stdin rc = csv.reader(inf) timestamps = dict() value = dict() def isnum(x): return re.match(r'[0-9.]+', x) val = "" for row in rc: r = csv_formats.parse_csv_row(row) if r is None: continue ts, cpu, event, val = r.ts, r.cpu, r.ev, r.val if event not in assigned: level = gen_level.get_level(event) assigned[event] = cur_colors[level][0] cur_colors[level] = cur_colors[level][1:] if len(cur_colors[level]) == 0: cur_colors[level] = all_colors value[event] = [] timestamps[event] = [] timestamps[event].append(float(ts)) try: value[event].append(float(val.replace("%",""))) except ValueError:
inf = open(args.file, "r") else: inf = sys.stdin rc = csv.reader(inf) timestamps = dict() value = dict() def isnum(x): return re.match(r'[0-9.]+', x) val = "" for row in rc: r = csv_formats.parse_csv_row(row) if r is None: continue ts, cpu, event, val = r.ts, r.cpu, r.ev, r.val if event not in assigned: level = gen_level.get_level(event) assigned[event] = cur_colors[level][0] cur_colors[level] = cur_colors[level][1:] if len(cur_colors[level]) == 0: cur_colors[level] = all_colors value[event] = [] timestamps[event] = [] timestamps[event].append(float(ts)) try: value[event].append(float(val.replace("%", ""))) except ValueError:
events = collections.OrderedDict() out = [] times = [] cpus = [] rc = csv.reader(args.inputfile) res = [] writer = csv.writer(args.output, lineterminator='\n') lastcpu = None cpu = None lineno = 1 for row in rc: if len(row) > 0 and (row[0] == "Timestamp" or row[0].startswith("#")): lineno += 1 continue r = csv_formats.parse_csv_row(row, error_exit=args.error_exit) if r is None: print("at line %d" % lineno, file=sys.stderr) lineno += 1 continue ts, cpu, ev, val = r.ts, r.cpu, r.ev, r.val if ts != timestamp or (cpu != lastcpu and not args.normalize_cpu): if timestamp: if args.cpu and cpu != args.cpu: continue # delay in case we didn't see all headers # only need to do that for toplev, directly output for perf? # could limit buffering to save memory? out.append(res) times.append(timestamp)