コード例 #1
0
def test_read_without_prefixes(tmp_path):
    path = tmp_path / "test.h5"

    hillas_parameter_container = HillasParametersContainer(fov_lon=1 * u.deg,
                                                           fov_lat=1 * u.deg,
                                                           length=1 * u.deg,
                                                           width=1 * u.deg)

    leakage_container = LeakageContainer(
        pixels_width_1=0.1,
        pixels_width_2=0.1,
        intensity_width_1=0.1,
        intensity_width_2=0.1,
    )

    with HDF5TableWriter(path, group_name="dl1", add_prefix=False) as writer:
        writer.write("params", (hillas_parameter_container, leakage_container))

    df = pd.read_hdf(path, key="/dl1/params")
    assert "fov_lon" in df.columns
    assert "pixels_width_1" in df.columns

    # call with prefixes=False
    with HDF5TableReader(path) as reader:
        generator = reader.read(
            "/dl1/params",
            (HillasParametersContainer, LeakageContainer),
            prefixes=False,
        )
        hillas_, leakage_ = next(generator)

    for value, read_value in zip(leakage_container.as_dict().values(),
                                 leakage_.as_dict().values()):
        np.testing.assert_equal(value, read_value)

    for value, read_value in zip(hillas_parameter_container.as_dict().values(),
                                 hillas_.as_dict().values()):
        np.testing.assert_equal(value, read_value)

    # call with manually removed prefixes
    with HDF5TableReader(path) as reader:
        generator = reader.read(
            "/dl1/params",
            (HillasParametersContainer, LeakageContainer),
            prefixes=["", ""],
        )
        hillas_, leakage_ = next(generator)

    for value, read_value in zip(leakage_container.as_dict().values(),
                                 leakage_.as_dict().values()):
        np.testing.assert_equal(value, read_value)

    for value, read_value in zip(hillas_parameter_container.as_dict().values(),
                                 hillas_.as_dict().values()):
        np.testing.assert_equal(value, read_value)
コード例 #2
0
def test_read_multiple_containers(tmp_path):
    path = tmp_path / "test_append.h5"
    hillas_parameter_container = HillasParametersContainer(fov_lon=1 * u.deg,
                                                           fov_lat=1 * u.deg,
                                                           length=1 * u.deg,
                                                           width=1 * u.deg)

    leakage_container = LeakageContainer(
        pixels_width_1=0.1,
        pixels_width_2=0.1,
        intensity_width_1=0.1,
        intensity_width_2=0.1,
    )
    with HDF5TableWriter(path, group_name="dl1", add_prefix=True) as writer:
        writer.write("params", [hillas_parameter_container, leakage_container])

    df = pd.read_hdf(path, key="/dl1/params")
    assert "hillas_fov_lon" in df.columns
    assert "leakage_pixels_width_1" in df.columns

    # test reading both containers separately
    with HDF5TableReader(path) as reader:
        generator = reader.read("/dl1/params",
                                HillasParametersContainer,
                                prefixes=True)
        hillas = next(generator)
    for value, read_value in zip(hillas_parameter_container.as_dict().values(),
                                 hillas.as_dict().values()):
        np.testing.assert_equal(value, read_value)

    with HDF5TableReader(path) as reader:
        generator = reader.read("/dl1/params", LeakageContainer, prefixes=True)
        leakage = next(generator)
    for value, read_value in zip(leakage_container.as_dict().values(),
                                 leakage.as_dict().values()):
        np.testing.assert_equal(value, read_value)

    # test reading both containers simultaneously
    with HDF5TableReader(path) as reader:
        generator = reader.read(
            "/dl1/params",
            (HillasParametersContainer, LeakageContainer),
            prefixes=True,
        )
        hillas_, leakage_ = next(generator)

    for value, read_value in zip(leakage_container.as_dict().values(),
                                 leakage_.as_dict().values()):
        np.testing.assert_equal(value, read_value)

    for value, read_value in zip(hillas_parameter_container.as_dict().values(),
                                 hillas_.as_dict().values()):
        np.testing.assert_equal(value, read_value)
コード例 #3
0
def test_read_multiple_containers():
    hillas_parameter_container = HillasParametersContainer(x=1 * u.m,
                                                           y=1 * u.m,
                                                           length=1 * u.m,
                                                           width=1 * u.m)

    leakage_container = LeakageContainer(
        pixels_width_1=0.1,
        pixels_width_2=0.1,
        intensity_width_1=0.1,
        intensity_width_2=0.1,
    )
    with tempfile.NamedTemporaryFile() as f:
        with HDF5TableWriter(f.name, group_name="dl1",
                             add_prefix=True) as writer:
            writer.write("params",
                         [hillas_parameter_container, leakage_container])

        df = pd.read_hdf(f.name, key="/dl1/params")
        assert "hillas_x" in df.columns
        assert "leakage_pixels_width_1" in df.columns

        # test reading both containers separately
        with HDF5TableReader(f.name) as reader:
            generator = reader.read("/dl1/params",
                                    HillasParametersContainer(),
                                    prefixes=True)
            hillas = next(generator)
        for value, read_value in zip(
                hillas_parameter_container.as_dict().values(),
                hillas.as_dict().values()):
            np.testing.assert_equal(value, read_value)

        with HDF5TableReader(f.name) as reader:
            generator = reader.read("/dl1/params",
                                    LeakageContainer(),
                                    prefixes=True)
            leakage = next(generator)
        for value, read_value in zip(leakage_container.as_dict().values(),
                                     leakage.as_dict().values()):
            np.testing.assert_equal(value, read_value)

        # test reading both containers simultaneously
        with HDF5TableReader(f.name) as reader:
            generator = reader.read(
                "/dl1/params",
                [HillasParametersContainer(),
                 LeakageContainer()],
                prefixes=True,
            )
            hillas_, leakage_ = next(generator)

        for value, read_value in zip(leakage_container.as_dict().values(),
                                     leakage_.as_dict().values()):
            np.testing.assert_equal(value, read_value)

        for value, read_value in zip(
                hillas_parameter_container.as_dict().values(),
                hillas_.as_dict().values()):
            np.testing.assert_equal(value, read_value)
コード例 #4
0
def test_prefix(tmp_path):
    tmp_file = tmp_path / "test_prefix.hdf5"
    hillas_parameter_container = HillasParametersContainer(x=1 * u.m,
                                                           y=1 * u.m,
                                                           length=1 * u.m,
                                                           width=1 * u.m)

    leakage_container = LeakageContainer(
        pixels_width_1=0.1,
        pixels_width_2=0.1,
        intensity_width_1=0.1,
        intensity_width_2=0.1,
    )

    with HDF5TableWriter(tmp_file.name, group_name="blabla",
                         add_prefix=True) as writer:
        writer.write("events", [hillas_parameter_container, leakage_container])

    df = pd.read_hdf(tmp_file.name, key="/blabla/events")
    assert "hillas_x" in df.columns
    assert "leakage_pixels_width_1" in df.columns

    with HDF5TableReader(tmp_file.name) as reader:
        generator = reader.read("/blabla/events",
                                HillasParametersContainer(),
                                prefix=True)
        hillas = next(generator)
    for value, read_value in zip(hillas_parameter_container.as_dict().values(),
                                 hillas.as_dict().values()):
        np.testing.assert_equal(value, read_value)

    with HDF5TableReader(tmp_file.name) as reader:
        generator = reader.read("/blabla/events",
                                LeakageContainer(),
                                prefix=True)
        leakage = next(generator)
    for value, read_value in zip(leakage_container.as_dict().values(),
                                 leakage.as_dict().values()):
        np.testing.assert_equal(value, read_value)
コード例 #5
0
def test_read_without_prefixes():
    hillas_parameter_container = HillasParametersContainer(
        x=1 * u.m, y=1 * u.m, length=1 * u.m, width=1 * u.m
    )

    leakage_container = LeakageContainer(
        pixels_width_1=0.1,
        pixels_width_2=0.1,
        intensity_width_1=0.1,
        intensity_width_2=0.1,
    )
    with tempfile.NamedTemporaryFile() as f:
        with HDF5TableWriter(f.name, group_name="dl1", add_prefix=False) as writer:
            writer.write("params", [hillas_parameter_container, leakage_container])

        df = pd.read_hdf(f.name, key="/dl1/params")
        assert "x" in df.columns
        assert "pixels_width_1" in df.columns

        # call with prefixes=False
        with HDF5TableReader(f.name) as reader:
            generator = reader.read(
                "/dl1/params",
                [HillasParametersContainer(), LeakageContainer()],
                prefixes=False,
            )
            hillas_, leakage_ = next(generator)

        for value, read_value in zip(
            leakage_container.as_dict().values(), leakage_.as_dict().values()
        ):
            np.testing.assert_equal(value, read_value)

        for value, read_value in zip(
            hillas_parameter_container.as_dict().values(), hillas_.as_dict().values()
        ):
            np.testing.assert_equal(value, read_value)

        # call with manually removed prefixes
        with HDF5TableReader(f.name) as reader:
            generator = reader.read(
                "/dl1/params",
                [HillasParametersContainer(prefix=""), LeakageContainer(prefix="")],
                prefixes=True,
            )
            hillas_, leakage_ = next(generator)

        for value, read_value in zip(
            leakage_container.as_dict().values(), leakage_.as_dict().values()
        ):
            np.testing.assert_equal(value, read_value)

        for value, read_value in zip(
            hillas_parameter_container.as_dict().values(), hillas_.as_dict().values()
        ):
            np.testing.assert_equal(value, read_value)
コード例 #6
0
def test_prefix(tmp_path):
    tmp_file = tmp_path / "test_prefix.hdf5"
    hillas_parameter_container = HillasParametersContainer(
        x=1 * u.m, y=1 * u.m, length=1 * u.m, width=1 * u.m
    )

    leakage_container = LeakageContainer(
        pixels_width_1=0.1,
        pixels_width_2=0.1,
        intensity_width_1=0.1,
        intensity_width_2=0.1,
    )

    with HDF5TableWriter(tmp_file.name, group_name="blabla", add_prefix=True) as writer:
        writer.write("events", [hillas_parameter_container, leakage_container])

    df = pd.read_hdf(tmp_file.name, key="/blabla/events")
    assert "hillas_x" in df.columns
    assert "leakage_pixels_width_1" in df.columns
コード例 #7
0
    def _generator(self):
        """
        Stereo event generator. Yields DataContainer instances, filled
        with the read event data.

        Returns
        -------

        """
        counter = 0
        data = DataContainer()
        data.meta['origin'] = "MAGIC"
        data.meta['input_url'] = self.input_url
        data.meta['is_simulation'] = True
        data.mcheader = self._mc_header

        if self.calib_M1 is not None and self.calib_M2 is not None:
            #Reading data from root file for Events table
            eventid_M1 = np.asarray(
                self.calib_M1["MRawEvtHeader.fStereoEvtNumber"].array())
            eventid_M2 = np.asarray(
                self.calib_M2["MRawEvtHeader.fStereoEvtNumber"].array())
            zenith = np.asarray(self.calib_M1["MMcEvt.fTheta"].array())
            pointing_altitude = np.asarray(
                self.calib_M1["MPointingPos.fZd"].array())
            azimuth = np.asarray(self.calib_M1["MMcEvt.fPhi"].array())
            pointing_azimuth = np.asarray(
                self.calib_M1["MPointingPos.fAz"].array())
            core_x = np.asarray(self.calib_M1["MMcEvt.fCoreX"].array())
            core_y = np.asarray(self.calib_M1["MMcEvt.fCoreY"].array())
            mc_energy = np.asarray(
                self.calib_M1["MMcEvt.fEnergy"].array()) / 1000.0
            h_first_int = np.asarray(
                self.calib_M1["MMcEvt.fZFirstInteraction"].array())

            #Reading data from root file for Image table
            charge_M1 = np.asarray(
                self.calib_M1["MCerPhotEvt.fPixels.fPhot"].array())
            peak_time_M1 = np.asarray(
                self.calib_M1["MArrivalTime.fData"].array())
            charge_M2 = np.asarray(
                self.calib_M2["MCerPhotEvt.fPixels.fPhot"].array())
            peak_time_M2 = np.asarray(
                self.calib_M2["MArrivalTime.fData"].array())

        if self.superstar is not None:
            #Reading data from root file for Events table
            eventid_M1 = np.asarray(
                self.superstar["MRawEvtHeader_1.fStereoEvtNumber"].array())
            eventid_M2 = np.asarray(
                self.superstar["MRawEvtHeader_2.fStereoEvtNumber"].array())
            zenith = np.asarray(self.superstar["MMcEvt_1.fTheta"].array())
            pointing_altitude = np.asarray(
                self.superstar["MPointingPos_1.fZd"].array())
            azimuth = np.asarray(self.superstar["MMcEvt_1.fPhi"].array())
            pointing_azimuth = np.asarray(
                self.superstar["MPointingPos_1.fAz"].array())
            core_x = np.asarray(self.superstar["MMcEvt_1.fCoreX"].array())
            core_y = np.asarray(self.superstar["MMcEvt_1.fCoreY"].array())
            mc_energy = np.asarray(
                self.superstar["MMcEvt_1.fEnergy"].array()) / 1000.0
            h_first_int = np.asarray(
                self.superstar["MMcEvt_1.fZFirstInteraction"].array())

            #Reading data from root file for Parameter table
            hillas_intensity_M1 = np.asarray(
                self.superstar["MHillas_1.fSize"].array())
            hillas_intensity_M2 = np.asarray(
                self.superstar["MHillas_2.fSize"].array())
            hillas_x_M1 = np.asarray(
                self.superstar["MHillas_1.fMeanX"].array())
            hillas_x_M2 = np.asarray(
                self.superstar["MHillas_2.fMeanX"].array())
            hillas_y_M1 = np.asarray(
                self.superstar["MHillas_1.fMeanY"].array())
            hillas_y_M2 = np.asarray(
                self.superstar["MHillas_2.fMeanY"].array())
            hillas_r_M1 = np.sqrt(
                np.power(hillas_x_M1, 2) + np.power(hillas_y_M1, 2))
            hillas_r_M2 = np.sqrt(
                np.power(hillas_x_M2, 2) + np.power(hillas_y_M2, 2))
            hillas_phi_M1 = np.arctan2(hillas_y_M1, hillas_x_M1)
            hillas_phi_M2 = np.arctan2(hillas_y_M2, hillas_x_M2)
            hillas_length_M1 = np.asarray(
                self.superstar["MHillas_1.fLength"].array())
            hillas_length_M2 = np.asarray(
                self.superstar["MHillas_2.fLength"].array())
            hillas_width_M1 = np.asarray(
                self.superstar["MHillas_1.fWidth"].array())
            hillas_width_M2 = np.asarray(
                self.superstar["MHillas_2.fWidth"].array())
            hillas_psi_M1 = np.asarray(
                self.superstar["MHillas_1.fDelta"].array())
            hillas_psi_M2 = np.asarray(
                self.superstar["MHillas_2.fDelta"].array())
            hillas_skewness_M1 = np.asarray(
                self.superstar["MHillasExt_1.fM3Long"].array())
            hillas_skewness_M2 = np.asarray(
                self.superstar["MHillasExt_2.fM3Long"].array())

            leakage_intensity_1_M1 = np.asarray(
                self.superstar["MNewImagePar_1.fLeakage1"].array())
            leakage_intensity_1_M2 = np.asarray(
                self.superstar["MNewImagePar_2.fLeakage1"].array())
            leakage_intensity_2_M1 = np.asarray(
                self.superstar["MNewImagePar_1.fLeakage2"].array())
            leakage_intensity_2_M2 = np.asarray(
                self.superstar["MNewImagePar_2.fLeakage2"].array())

            num_islands_M1 = np.asarray(
                self.superstar["MCerPhotEvt_1.fNumIslands"].array())
            num_islands_M2 = np.asarray(
                self.superstar["MCerPhotEvt_2.fNumIslands"].array())

            #Reading data from root file for Image table (peak time and image mask not )
            charge_M1 = np.asarray(
                self.superstar["MCerPhotEvt_1.fPixels.fPhot"].array())
            peak_time_M1 = np.zeros((charge_M1.shape[0], 1039))
            image_mask_M1 = np.zeros((charge_M1.shape[0], 1039), dtype=bool)
            charge_M2 = np.asarray(
                self.superstar["MCerPhotEvt_2.fPixels.fPhot"].array())
            peak_time_M2 = np.zeros((charge_M2.shape[0], 1039))
            image_mask_M2 = np.zeros((charge_M2.shape[0], 1039), dtype=bool)

        # Get the shower primary id
        shower_primary_id = 1
        if self.file_list[0].split("/")[-1].startswith("GA"):
            shower_primary_id = 1

        #Iterating over all events, and saving only stereo ones
        total_events = min(len(charge_M1), len(charge_M2))
        tels_with_data = {1, 2}
        for i in range(0, total_events):
            if eventid_M1[i] != 0:
                obs_id = self.run_number
                event_id = eventid_M1[i]
                i2 = np.where(eventid_M2 == eventid_M1[i])
                i2 = i2[0].astype(int)
                data.count = counter

                # Setting up the Data container
                data.index.obs_id = obs_id
                data.index.event_id = event_id
                data.r0.tel.clear()
                data.r1.tel.clear()
                data.dl0.tel.clear()

                # Adding the array pointing in the pointing container
                data.pointing.array_altitude = u.Quantity(
                    np.deg2rad(90.0 - pointing_altitude[i]), u.rad)
                data.pointing.array_azimuth = u.Quantity(
                    np.deg2rad(pointing_azimuth[i]), u.rad)

                # Filling the DL1 container with the event data
                for tel_id in tels_with_data:
                    #Adding telescope pointing container
                    data.pointing.tel[tel_id].azimuth = u.Quantity(
                        np.deg2rad(pointing_azimuth[i]), u.rad)
                    data.pointing.tel[tel_id].altitude = u.Quantity(
                        np.deg2rad(90.0 - pointing_altitude[i]), u.rad)

                    #Adding MC data
                    data.mc.alt = Angle(np.pi / 2.0 - zenith[i], u.rad)
                    data.mc.az = Angle(
                        np.deg2rad(180.0 - 7.0) - azimuth[i], u.rad)
                    data.mc.x_max = u.Quantity(0, X_MAX_UNIT)
                    data.mc.h_first_int = u.Quantity(h_first_int[i], u.m)
                    data.mc.core_x = u.Quantity(core_x[i], u.m)
                    data.mc.core_y = u.Quantity(core_y[i], u.m)
                    data.mc.energy = u.Quantity(mc_energy[i], u.TeV)
                    data.mc.shower_primary_id = shower_primary_id

                    if self.superstar is not None:
                        leakage_values = LeakageContainer()
                        hillas_parameters_values = HillasParametersContainer()
                        concentration_values = ConcentrationContainer()
                        timing_values = TimingParametersContainer()
                        morphology_values = MorphologyContainer()

                    # Adding charge, peak time and parameters
                    if tel_id == 1:
                        data.dl1.tel[tel_id].image = charge_M1[i][:1039]
                        data.dl1.tel[tel_id].peak_time = peak_time_M1[i][:1039]
                        if self.superstar is not None:
                            data.dl1.tel[tel_id].image_mask = image_mask_M1[
                                i][:1039]

                            hillas_parameters_values[
                                "intensity"] = hillas_intensity_M1[i]
                            hillas_parameters_values["x"] = u.Quantity(
                                hillas_x_M1[i], unit=u.mm)
                            hillas_parameters_values["y"] = u.Quantity(
                                hillas_y_M1[i], unit=u.mm)
                            hillas_parameters_values["r"] = u.Quantity(
                                hillas_r_M1[i], unit=u.mm)
                            hillas_parameters_values["phi"] = u.Quantity(
                                hillas_phi_M1[i], unit=u.rad)
                            hillas_parameters_values["length"] = u.Quantity(
                                hillas_length_M1[i], unit=u.mm)
                            hillas_parameters_values["width"] = u.Quantity(
                                hillas_width_M1[i], unit=u.mm)
                            hillas_parameters_values["psi"] = u.Quantity(
                                hillas_psi_M1[i], unit=u.rad)
                            hillas_parameters_values[
                                "skewness"] = hillas_skewness_M1[i]

                            leakage_values[
                                "intensity_width_1"] = leakage_intensity_1_M1[
                                    i]
                            leakage_values[
                                "intensity_width_2"] = leakage_intensity_2_M1[
                                    i]

                            morphology_values["num_pixels"] = 1039
                            morphology_values["num_islands"] = num_islands_M1[
                                i]

                    else:
                        data.dl1.tel[tel_id].image = charge_M2[i][:1039]
                        data.dl1.tel[tel_id].peak_time = peak_time_M2[i][:1039]
                        if self.superstar is not None:
                            data.dl1.tel[tel_id].image_mask = image_mask_M2[
                                i][:1039]

                            hillas_parameters_values[
                                "intensity"] = hillas_intensity_M2[i]
                            hillas_parameters_values["x"] = u.Quantity(
                                hillas_x_M2[i], unit=u.mm)
                            hillas_parameters_values["y"] = u.Quantity(
                                hillas_y_M2[i], unit=u.mm)
                            hillas_parameters_values["r"] = u.Quantity(
                                hillas_r_M2[i], unit=u.mm)
                            hillas_parameters_values["phi"] = u.Quantity(
                                hillas_phi_M2[i], unit=u.rad)
                            hillas_parameters_values["length"] = u.Quantity(
                                hillas_length_M2[i], unit=u.mm)
                            hillas_parameters_values["width"] = u.Quantity(
                                hillas_width_M2[i], unit=u.mm)
                            hillas_parameters_values["psi"] = u.Quantity(
                                hillas_psi_M2[i], unit=u.rad)
                            hillas_parameters_values[
                                "skewness"] = hillas_skewness_M2[i]

                            leakage_values[
                                "intensity_width_1"] = leakage_intensity_1_M2[
                                    i]
                            leakage_values[
                                "intensity_width_2"] = leakage_intensity_2_M2[
                                    i]

                            morphology_values["num_pixels"] = 1039
                            morphology_values["num_islands"] = num_islands_M2[
                                i]

                    if self.superstar is not None:
                        data.dl1.tel[
                            tel_id].parameters.leakage = leakage_values
                        data.dl1.tel[
                            tel_id].parameters.hillas = hillas_parameters_values
                        data.dl1.tel[
                            tel_id].parameters.concentration = concentration_values
                        data.dl1.tel[tel_id].parameters.timing = timing_values
                        data.dl1.tel[
                            tel_id].parameters.morphology = morphology_values

                # Setting the telescopes with data
                data.r0.tels_with_data = tels_with_data
                data.r1.tels_with_data = tels_with_data
                data.dl0.tels_with_data = tels_with_data

                yield data
                counter += 1
        return
コード例 #8
0
    def _generate_events(self):
        """
        Yield ArrayEventContainer to iterate through events.
        """
        data = ArrayEventContainer()
        # Maybe take some other metadata, but there are still some 'unknown'
        # written out by the stage1 tool
        data.meta["origin"] = self.file_.root._v_attrs["CTA PROCESS TYPE"]
        data.meta["input_url"] = self.input_url
        data.meta["max_events"] = self.max_events

        if DataLevel.DL1_IMAGES in self.datalevels:
            image_iterators = {
                tel.name: self.file_.root.dl1.event.telescope.images[
                    tel.name
                ].iterrows()
                for tel in self.file_.root.dl1.event.telescope.images
            }
            if self.has_simulated_dl1:
                simulated_image_iterators = {
                    tel.name: self.file_.root.simulation.event.telescope.images[
                        tel.name
                    ].iterrows()
                    for tel in self.file_.root.simulation.event.telescope.images
                }

        if DataLevel.DL1_PARAMETERS in self.datalevels:
            param_readers = {
                tel.name: HDF5TableReader(self.file_).read(
                    f"/dl1/event/telescope/parameters/{tel.name}",
                    containers=[
                        HillasParametersContainer(),
                        TimingParametersContainer(),
                        LeakageContainer(),
                        ConcentrationContainer(),
                        MorphologyContainer(),
                        IntensityStatisticsContainer(),
                        PeakTimeStatisticsContainer(),
                    ],
                    prefixes=True,
                )
                for tel in self.file_.root.dl1.event.telescope.parameters
            }
            if self.has_simulated_dl1:
                simulated_param_readers = {
                    tel.name: HDF5TableReader(self.file_).read(
                        f"/simulation/event/telescope/parameters/{tel.name}",
                        containers=[
                            HillasParametersContainer(),
                            LeakageContainer(),
                            ConcentrationContainer(),
                            MorphologyContainer(),
                            IntensityStatisticsContainer(),
                        ],
                        prefixes=True,
                    )
                    for tel in self.file_.root.dl1.event.telescope.parameters
                }

        if self.is_simulation:
            # simulated shower wide information
            mc_shower_reader = HDF5TableReader(self.file_).read(
                "/simulation/event/subarray/shower",
                SimulatedShowerContainer(),
                prefixes="true",
            )

        # Setup iterators for the array events
        events = HDF5TableReader(self.file_).read(
            "/dl1/event/subarray/trigger", [TriggerContainer(), EventIndexContainer()]
        )

        array_pointing_finder = IndexFinder(
            self.file_.root.dl1.monitoring.subarray.pointing.col("time")
        )

        tel_pointing_finder = {
            tel.name: IndexFinder(tel.col("time"))
            for tel in self.file_.root.dl1.monitoring.telescope.pointing
        }

        for counter, array_event in enumerate(events):
            data.dl1.tel.clear()
            data.simulation.tel.clear()
            data.pointing.tel.clear()
            data.trigger.tel.clear()

            data.count = counter
            data.trigger, data.index = next(events)
            data.trigger.tels_with_trigger = (
                np.where(data.trigger.tels_with_trigger)[0] + 1
            )  # +1 to match array index to telescope id

            # Maybe there is a simpler way  to do this
            # Beware: tels_with_trigger contains all triggered telescopes whereas
            # the telescope trigger table contains only the subset of
            # allowed_tels given during the creation of the dl1 file
            for i in self.file_.root.dl1.event.telescope.trigger.where(
                f"(obs_id=={data.index.obs_id}) & (event_id=={data.index.event_id})"
            ):
                if self.allowed_tels and i["tel_id"] not in self.allowed_tels:
                    continue
                if self.datamodel_version == "v1.0.0":
                    data.trigger.tel[i["tel_id"]].time = i["telescopetrigger_time"]
                else:
                    data.trigger.tel[i["tel_id"]].time = i["time"]

            self._fill_array_pointing(data, array_pointing_finder)
            self._fill_telescope_pointing(data, tel_pointing_finder)

            if self.is_simulation:
                data.simulation.shower = next(mc_shower_reader)

            for tel in data.trigger.tel.keys():
                if self.allowed_tels and tel not in self.allowed_tels:
                    continue
                if self.has_simulated_dl1:
                    simulated = data.simulation.tel[tel]
                dl1 = data.dl1.tel[tel]
                if DataLevel.DL1_IMAGES in self.datalevels:
                    if f"tel_{tel:03d}" not in image_iterators.keys():
                        logger.debug(
                            f"Triggered telescope {tel} is missing "
                            "from the image table."
                        )
                        continue
                    image_row = next(image_iterators[f"tel_{tel:03d}"])
                    dl1.image = image_row["image"]
                    dl1.peak_time = image_row["peak_time"]
                    dl1.image_mask = image_row["image_mask"]

                    if self.has_simulated_dl1:
                        if f"tel_{tel:03d}" not in simulated_image_iterators.keys():
                            logger.warning(
                                f"Triggered telescope {tel} is missing "
                                "from the simulated image table, but was present at the "
                                "reconstructed image table."
                            )
                            continue
                        simulated_image_row = next(
                            simulated_image_iterators[f"tel_{tel:03d}"]
                        )
                        simulated.true_image = simulated_image_row["true_image"]

                if DataLevel.DL1_PARAMETERS in self.datalevels:
                    if f"tel_{tel:03d}" not in param_readers.keys():
                        logger.debug(
                            f"Triggered telescope {tel} is missing "
                            "from the parameters table."
                        )
                        continue
                    # Is there a smarter way to unpack this?
                    # Best would probbaly be if we could directly read
                    # into the ImageParametersContainer
                    params = next(param_readers[f"tel_{tel:03d}"])
                    dl1.parameters.hillas = params[0]
                    dl1.parameters.timing = params[1]
                    dl1.parameters.leakage = params[2]
                    dl1.parameters.concentration = params[3]
                    dl1.parameters.morphology = params[4]
                    dl1.parameters.intensity_statistics = params[5]
                    dl1.parameters.peak_time_statistics = params[6]

                    if self.has_simulated_dl1:
                        if f"tel_{tel:03d}" not in param_readers.keys():
                            logger.debug(
                                f"Triggered telescope {tel} is missing "
                                "from the simulated parameters table, but was "
                                "present at the reconstructed parameters table."
                            )
                            continue
                        simulated_params = next(
                            simulated_param_readers[f"tel_{tel:03d}"]
                        )
                        simulated.true_parameters.hillas = simulated_params[0]
                        simulated.true_parameters.leakage = simulated_params[1]
                        simulated.true_parameters.concentration = simulated_params[2]
                        simulated.true_parameters.morphology = simulated_params[3]
                        simulated.true_parameters.intensity_statistics = simulated_params[
                            4
                        ]

            yield data
コード例 #9
0
    def _generator(self):
        """
        Stereo event generator. Yields DataContainer instances, filled
        with the read event data.

        Returns
        -------

        """
        counter = 0
        data = DataContainer()
        data.meta["origin"] = "MAGIC"
        data.meta["input_url"] = self.input_url
        data.meta["is_simulation"] = self.mc
        data.mcheader = self._header

        if self.calib_M1 is not None and self.calib_M2 is not None:
            # Reading data from root file for Events table
            shower_primary_id = self.magic_to_cta_shower_primary_id[int(
                self.superstar["MMcEvt_1.fPartId"].array()[0])]
            eventid_M1 = np.asarray(
                self.calib_M1["MRawEvtHeader.fStereoEvtNumber"].array())
            eventid_M2 = np.asarray(
                self.calib_M2["MRawEvtHeader.fStereoEvtNumber"].array())
            zenith = np.asarray(self.calib_M1["MMcEvt.fTheta"].array())
            pointing_altitude = np.asarray(
                self.calib_M1["MPointingPos.fZd"].array())
            azimuth = np.asarray(self.calib_M1["MMcEvt.fPhi"].array())
            pointing_azimuth = np.asarray(
                self.calib_M1["MPointingPos.fAz"].array())
            core_x = np.asarray(self.calib_M1["MMcEvt.fCoreX"].array())
            core_y = np.asarray(self.calib_M1["MMcEvt.fCoreY"].array())
            mc_energy = np.asarray(
                self.calib_M1["MMcEvt.fEnergy"].array()) / 1000.0
            h_first_int = np.asarray(
                self.calib_M1["MMcEvt.fZFirstInteraction"].array())

            # Reading data from root file for Image table
            charge_M1 = np.asarray(
                self.calib_M1["MCerPhotEvt.fPixels.fPhot"].array())
            peak_time_M1 = np.asarray(
                self.calib_M1["MArrivalTime.fData"].array())
            image_mask_M1 = np.asarray(self.calib_M1["CleanCharge"].array())
            for i, mask in enumerate(image_mask_M1):
                image_mask_M1[i] = np.array(mask) != 0

            charge_M2 = np.asarray(
                self.calib_M2["MCerPhotEvt.fPixels.fPhot"].array())
            peak_time_M2 = np.asarray(
                self.calib_M2["MArrivalTime.fData"].array())
            image_mask_M2 = np.asarray(self.calib_M2["CleanCharge"].array())
            for i, mask in enumerate(image_mask_M2):
                image_mask_M2[i] = np.array(mask) != 0

        if self.superstar is not None:
            # Reading data from root file for Events table
            # only read MC information if it exists
            if self.is_simulation:
                shower_primary_id = self.magic_to_cta_shower_primary_id[int(
                    self.superstar["MMcEvt_1.fPartId"].array()[0])]
                src_pos_cam_Y = np.asarray(
                    self.superstar["MSrcPosCam_1.fY"].array())
                src_pos_cam_X = np.asarray(
                    self.superstar["MSrcPosCam_1.fX"].array())
                core_x = np.asarray(self.superstar["MMcEvt_1.fCoreX"].array())
                core_y = np.asarray(self.superstar["MMcEvt_1.fCoreY"].array())
                mc_energy = (
                    np.asarray(self.superstar["MMcEvt_1.fEnergy"].array()) /
                    1000.0)
                h_first_int = np.asarray(
                    self.superstar["MMcEvt_1.fZFirstInteraction"].array())

            eventid_M1 = np.asarray(
                self.superstar["MRawEvtHeader_1.fStereoEvtNumber"].array())
            eventid_M2 = np.asarray(
                self.superstar["MRawEvtHeader_2.fStereoEvtNumber"].array())
            pointing_altitude = np.asarray(
                self.superstar["MPointingPos_1.fZd"].array())
            pointing_azimuth = np.asarray(
                self.superstar["MPointingPos_1.fAz"].array())

            # Reading data from root file for Parameter table
            hillas_intensity_M1 = np.asarray(
                self.superstar["MHillas_1.fSize"].array())
            hillas_intensity_M2 = np.asarray(
                self.superstar["MHillas_2.fSize"].array())
            hillas_x_M1 = np.asarray(
                self.superstar["MHillas_1.fMeanX"].array())
            hillas_x_M2 = np.asarray(
                self.superstar["MHillas_2.fMeanX"].array())
            hillas_y_M1 = np.asarray(
                self.superstar["MHillas_1.fMeanY"].array())
            hillas_y_M2 = np.asarray(
                self.superstar["MHillas_2.fMeanY"].array())
            hillas_r_M1 = np.sqrt(
                np.power(hillas_x_M1, 2) + np.power(hillas_y_M1, 2))
            hillas_r_M2 = np.sqrt(
                np.power(hillas_x_M2, 2) + np.power(hillas_y_M2, 2))
            hillas_phi_M1 = np.arctan2(hillas_y_M1, hillas_x_M1)
            hillas_phi_M2 = np.arctan2(hillas_y_M2, hillas_x_M2)
            hillas_length_M1 = np.asarray(
                self.superstar["MHillas_1.fLength"].array())
            hillas_length_M2 = np.asarray(
                self.superstar["MHillas_2.fLength"].array())
            hillas_width_M1 = np.asarray(
                self.superstar["MHillas_1.fWidth"].array())
            hillas_width_M2 = np.asarray(
                self.superstar["MHillas_2.fWidth"].array())
            hillas_psi_M1 = np.asarray(
                self.superstar["MHillas_1.fDelta"].array())
            hillas_psi_M2 = np.asarray(
                self.superstar["MHillas_2.fDelta"].array())
            hillas_skewness_M1 = np.asarray(
                self.superstar["MHillasExt_1.fM3Long"].array())
            hillas_skewness_M2 = np.asarray(
                self.superstar["MHillasExt_2.fM3Long"].array())

            leakage_intensity_1_M1 = np.asarray(
                self.superstar["MNewImagePar_1.fLeakage1"].array())
            leakage_intensity_1_M2 = np.asarray(
                self.superstar["MNewImagePar_2.fLeakage1"].array())
            leakage_intensity_2_M1 = np.asarray(
                self.superstar["MNewImagePar_1.fLeakage2"].array())
            leakage_intensity_2_M2 = np.asarray(
                self.superstar["MNewImagePar_2.fLeakage2"].array())

            num_islands_M1 = np.asarray(
                self.superstar["MImagePar_1.fNumIslands"].array())
            num_islands_M2 = np.asarray(
                self.superstar["MImagePar_2.fNumIslands"].array())
            x_max = np.asarray(self.superstar["MStereoPar.fXMax"].array())

            # Reading data from root file for Image table (charge, peak time and image mask)
            charge_M1 = np.asarray(self.superstar["UprootImageOrig_1"].array())
            for i, charge in enumerate(charge_M1):
                charge_M1[i] = np.array(charge)
            peak_time_M1 = np.asarray(
                self.superstar["MArrivalTime_1.fData"].array())
            image_mask_M1 = np.asarray(
                self.superstar["UprootImageOrigClean_1"].array())
            for i, mask in enumerate(image_mask_M1):
                image_mask_M1[i] = np.array(mask) != 0

            charge_M2 = np.asarray(self.superstar["UprootImageOrig_2"].array())
            for i, charge in enumerate(charge_M2):
                charge_M2[i] = np.array(charge)

            charge_M2 = np.asarray(
                self.superstar["MCerPhotEvt_2.fPixels.fPhot"].array())
            peak_time_M2 = np.asarray(
                self.superstar["MArrivalTime_2.fData"].array())
            image_mask_M2 = np.asarray(
                self.superstar["UprootImageOrigClean_2"].array())
            for i, mask in enumerate(image_mask_M2):
                image_mask_M2[i] = np.array(mask) != 0

        # Iterating over all events, and saving only stereo ones
        total_events = min(len(charge_M1), len(charge_M2))
        tels_with_data = {1, 2}
        for i in range(0, total_events):
            if eventid_M1[i] != 0:
                obs_id = self.run_number
                event_id = eventid_M1[i]
                i2 = np.where(eventid_M2 == eventid_M1[i])
                i2 = i2[0].astype(int)
                data.count = counter

                # Setting up the Data container
                data.index.obs_id = obs_id
                data.index.event_id = event_id
                data.r0.tel.clear()
                data.r1.tel.clear()
                data.dl0.tel.clear()

                # Adding the array pointing in the pointing container
                data.pointing.array_altitude = u.Quantity(
                    np.deg2rad(90.0 - pointing_altitude[i]), u.rad)
                data.pointing.array_azimuth = u.Quantity(
                    np.deg2rad(pointing_azimuth[i]), u.rad)

                # Filling the DL1 container with the event data
                for tel_id in tels_with_data:
                    # Adding telescope pointing container
                    data.pointing.tel[tel_id].azimuth = u.Quantity(
                        np.deg2rad(pointing_azimuth[i]), u.rad)
                    data.pointing.tel[tel_id].altitude = u.Quantity(
                        np.deg2rad(90.0 - pointing_altitude[i]), u.rad)

                    # Adding MC data
                    if self.is_simulation:
                        data.mc.alt = Angle(
                            np.deg2rad(src_pos_cam_Y[i] * 0.00337), u.rad)
                        data.mc.az = Angle(
                            np.deg2rad(src_pos_cam_X[i] * 0.00337), u.rad)
                        data.mc.x_max = u.Quantity(x_max[i], X_MAX_UNIT)
                        data.mc.h_first_int = u.Quantity(h_first_int[i], u.m)
                        data.mc.core_x = u.Quantity(core_x[i], u.m)
                        data.mc.core_y = u.Quantity(core_y[i], u.m)
                        data.mc.energy = u.Quantity(mc_energy[i], u.TeV)
                        data.mc.shower_primary_id = shower_primary_id

                    if self.superstar is not None:
                        leakage_values = LeakageContainer()
                        hillas_parameters_values = HillasParametersContainer()
                        concentration_values = ConcentrationContainer()
                        timing_values = TimingParametersContainer()
                        morphology_values = MorphologyContainer()

                    # Adding charge, peak time and parameters
                    if tel_id == 1:
                        data.dl1.tel[tel_id].image = charge_M1[i][:1039]
                        data.dl1.tel[tel_id].peak_time = peak_time_M1[i][:1039]
                        data.dl1.tel[tel_id].image_mask = image_mask_M1[
                            i][:1039]

                        if self.superstar is not None:
                            hillas_parameters_values[
                                "intensity"] = hillas_intensity_M1[i]
                            hillas_parameters_values["x"] = u.Quantity(
                                hillas_x_M1[i], unit=u.mm)
                            hillas_parameters_values["y"] = u.Quantity(
                                hillas_y_M1[i], unit=u.mm)
                            hillas_parameters_values["r"] = u.Quantity(
                                hillas_r_M1[i], unit=u.mm)
                            hillas_parameters_values["phi"] = u.Quantity(
                                hillas_phi_M1[i], unit=u.rad)
                            hillas_parameters_values["length"] = u.Quantity(
                                hillas_length_M1[i], unit=u.mm)
                            hillas_parameters_values["width"] = u.Quantity(
                                hillas_width_M1[i], unit=u.mm)
                            hillas_parameters_values["psi"] = u.Quantity(
                                hillas_psi_M1[i], unit=u.rad)
                            hillas_parameters_values[
                                "skewness"] = hillas_skewness_M1[i]

                            leakage_values[
                                "intensity_width_1"] = leakage_intensity_1_M1[
                                    i]
                            leakage_values[
                                "intensity_width_2"] = leakage_intensity_2_M1[
                                    i]

                            morphology_values["num_islands"] = num_islands_M1[
                                i]

                    else:
                        data.dl1.tel[tel_id].image = charge_M2[i][:1039]
                        data.dl1.tel[tel_id].peak_time = peak_time_M2[i][:1039]
                        data.dl1.tel[tel_id].image_mask = image_mask_M2[
                            i][:1039]

                        if self.superstar is not None:
                            hillas_parameters_values[
                                "intensity"] = hillas_intensity_M2[i]
                            hillas_parameters_values["x"] = u.Quantity(
                                hillas_x_M2[i], unit=u.mm)
                            hillas_parameters_values["y"] = u.Quantity(
                                hillas_y_M2[i], unit=u.mm)
                            hillas_parameters_values["r"] = u.Quantity(
                                hillas_r_M2[i], unit=u.mm)
                            hillas_parameters_values["phi"] = u.Quantity(
                                hillas_phi_M2[i], unit=u.rad)
                            hillas_parameters_values["length"] = u.Quantity(
                                hillas_length_M2[i], unit=u.mm)
                            hillas_parameters_values["width"] = u.Quantity(
                                hillas_width_M2[i], unit=u.mm)
                            hillas_parameters_values["psi"] = u.Quantity(
                                hillas_psi_M2[i], unit=u.rad)
                            hillas_parameters_values[
                                "skewness"] = hillas_skewness_M2[i]

                            leakage_values[
                                "intensity_width_1"] = leakage_intensity_1_M2[
                                    i]
                            leakage_values[
                                "intensity_width_2"] = leakage_intensity_2_M2[
                                    i]

                            morphology_values["num_islands"] = num_islands_M2[
                                i]

                    if self.superstar is not None:
                        data.dl1.tel[
                            tel_id].parameters.leakage = leakage_values
                        data.dl1.tel[
                            tel_id].parameters.hillas = hillas_parameters_values
                        data.dl1.tel[
                            tel_id].parameters.concentration = concentration_values
                        data.dl1.tel[tel_id].parameters.timing = timing_values
                        data.dl1.tel[
                            tel_id].parameters.morphology = morphology_values

                # Setting the telescopes with data
                data.r0.tels_with_data = tels_with_data
                data.r1.tels_with_data = tels_with_data
                data.dl0.tels_with_data = tels_with_data

                yield data
                counter += 1
        return