def predict(self, hillas_parameters, tel_x, tel_y, array_direction): """ Parameters ---------- hillas_parameters: dict Dictionary containing Hillas parameters for all telescopes in reconstruction tel_x: dict Dictionary containing telescope position on ground for all telescopes in reconstruction tel_y: dict Dictionary containing telescope position on ground for all telescopes in reconstruction array_direction: HorizonFrame Pointing direction of the array Returns ------- """ src_x, src_y, err_x, err_y = self.reconstruct_nominal( hillas_parameters) core_x, core_y, core_err_x, core_err_y = self.reconstruct_tilted( hillas_parameters, tel_x, tel_y) err_x *= u.rad err_y *= u.rad nom = NominalFrame(x=src_x * u.rad, y=src_y * u.rad, array_direction=array_direction) horiz = nom.transform_to(HorizonFrame()) result = ReconstructedShowerContainer() result.alt, result.az = horiz.alt, horiz.az tilt = TiltedGroundFrame(x=core_x * u.m, y=core_y * u.m, pointing_direction=array_direction) grd = project_to_ground(tilt) result.core_x = grd.x result.core_y = grd.y x_max = self.reconstruct_xmax(nom.x, nom.y, tilt.x, tilt.y, hillas_parameters, tel_x, tel_y, 90 * u.deg - array_direction.alt) result.core_uncert = np.sqrt(core_err_x * core_err_x + core_err_y * core_err_y) * u.m result.tel_ids = [h for h in hillas_parameters.keys()] result.average_size = np.mean( [h.size for h in hillas_parameters.values()]) result.is_valid = True src_error = np.sqrt(err_x * err_x + err_y * err_y) result.alt_uncert = src_error.to(u.deg) result.az_uncert = src_error.to(u.deg) result.h_max = x_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def predict(self, hillas_parameters, tel_x, tel_y, array_direction): """ Parameters ---------- hillas_parameters: dict Dictionary containing Hillas parameters for all telescopes in reconstruction tel_x: dict Dictionary containing telescope position on ground for all telescopes in reconstruction tel_y: dict Dictionary containing telescope position on ground for all telescopes in reconstruction array_direction: HorizonFrame Pointing direction of the array Returns ------- """ src_x, src_y, err_x, err_y = self.reconstruct_nominal(hillas_parameters) core_x, core_y, core_err_x, core_err_y = self.reconstruct_tilted( hillas_parameters, tel_x, tel_y) err_x *= u.rad err_y *= u.rad nom = NominalFrame(x=src_x * u.rad, y=src_y * u.rad, array_direction=array_direction) horiz = nom.transform_to(HorizonFrame()) result = ReconstructedShowerContainer() result.alt, result.az = horiz.alt, horiz.az tilt = TiltedGroundFrame(x=core_x * u.m, y=core_y * u.m, pointing_direction=array_direction) grd = project_to_ground(tilt) result.core_x = grd.x result.core_y = grd.y x_max = self.reconstruct_xmax(nom.x, nom.y, tilt.x, tilt.y, hillas_parameters, tel_x, tel_y, 90 * u.deg - array_direction.alt) result.core_uncert = np.sqrt( core_err_x * core_err_x + core_err_y * core_err_y) * u.m result.tel_ids = [h for h in hillas_parameters.keys()] result.average_size = np.mean([h.size for h in hillas_parameters.values()]) result.is_valid = True src_error = np.sqrt(err_x * err_x + err_y * err_y) result.alt_uncert = src_error.to(u.deg) result.az_uncert = src_error.to(u.deg) result.h_max = x_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def predict(self, hillas_dict, inst, tel_phi, tel_theta, seed_pos=(0, 0)): '''The function you want to call for the reconstruction of the event. It takes care of setting up the event and consecutively calls the functions for the direction and core position reconstruction. Shower parameters not reconstructed by this class are set to np.nan Parameters ----------- hillas_dict : python dictionary dictionary with telescope IDs as key and MomentParameters instances as values seed_pos : python tuple shape (2) tuple with a possible seed for the core position fit (e.g. CoG of all telescope images) ''' self.get_great_circles(hillas_dict, inst, tel_phi, tel_theta) # algebraic direction estimate dir1 = self.fit_origin_crosses()[0] # direction estimate using numerical minimisation # does not really improve the fit for now # dir2 = self.fit_origin_minimise(dir1) # core position estimate using numerical minimisation # pos = self.fit_core_minimise(seed_pos) # core position estimate using a geometric approach pos = self.fit_core_crosses() # container class for reconstructed showers ''' result = ReconstructedShowerContainer() (phi, theta) = linalg.get_phi_theta(dir1).to(u.deg) # TODO make sure az and phi turn in same direction... result.alt, result.az = 90 * u.deg - theta, phi result.core_x = pos[0] result.core_y = pos[1] result.tel_ids = [h for h in hillas_dict.keys()] result.average_size = np.mean([h.size for h in hillas_dict.values()]) result.is_valid = True result.alt_uncert = np.nan result.az_uncert = np.nan result.core_uncert = np.nan result.h_max = np.nan result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def test_image_prediction(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties( {1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) """First check image prediction by directly accessing the function""" pred = self.impact_reco.image_prediction("CHEC", zenith=0, azimuth=0, energy=1, impact=50, x_max=0, pix_x=pixel_x, pix_y=pixel_y) assert np.sum(pred) != 0 """Then check helper function gives the same answer""" shower = ReconstructedShowerContainer() shower.is_valid = True shower.alt = 0 * u.deg shower.az = 0 * u.deg shower.core_x = 0 * u.m shower.core_y = 100 * u.m shower.h_max = 300 + 93 * np.log10(1) energy = ReconstructedEnergyContainer() energy.is_valid = True energy.energy = 1 * u.TeV pred2 = self.impact_reco.get_prediction(1, shower_reco=shower, energy_reco=energy) print(pred, pred2) assert pred.all() == pred2.all()
def test_image_prediction(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties({1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) """First check image prediction by directly accessing the function""" pred = self.impact_reco.image_prediction("CHEC", zenith=0, azimuth=0, energy=1, impact=50, x_max=0, pix_x=pixel_x, pix_y=pixel_y) assert np.sum(pred) != 0 """Then check helper function gives the same answer""" shower = ReconstructedShowerContainer() shower.is_valid = True shower.alt = 0 * u.deg shower.az = 0 * u.deg shower.core_x = 0 * u.m shower.core_y = 100 * u.m shower.h_max = 300 + 93 * np.log10(1) energy = ReconstructedEnergyContainer() energy.is_valid = True energy.energy = 1 * u.TeV pred2 = self.impact_reco.get_prediction(1, shower_reco=shower, energy_reco=energy) print(pred, pred2) assert pred.all() == pred2.all()
def predict(self, hillas_dict, inst, pointing_alt, pointing_az, seed_pos=(0, 0)): """The function you want to call for the reconstruction of the event. It takes care of setting up the event and consecutively calls the functions for the direction and core position reconstruction. Shower parameters not reconstructed by this class are set to np.nan Parameters ----------- hillas_dict : python dictionary dictionary with telescope IDs as key and MomentParameters instances as values inst : ctapipe.io.InstrumentContainer instrumental description pointing_alt: pointing_az: seed_pos : python tuple shape (2) tuple with a possible seed for the core position fit (e.g. CoG of all telescope images) Raises ------ TooFewTelescopesException if len(hillas_dict) < 2 """ # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}" .format(len(hillas_dict))) self.inititialize_hillas_planes( hillas_dict, inst.subarray, pointing_alt, pointing_az ) # algebraic direction estimate direction, err_est_dir = self.estimate_direction() # core position estimate using a geometric approach pos, err_est_pos = self.estimate_core_position() # container class for reconstructed showers result = ReconstructedShowerContainer() _, lat, lon = cartesian_to_spherical(*direction) # estimate max height of shower h_max = self.estimate_h_max(hillas_dict, inst.subarray, pointing_alt, pointing_az) result.alt, result.az = lat, lon result.core_x = pos[0] result.core_y = pos[1] result.core_uncert = err_est_pos result.tel_ids = [h for h in hillas_dict.keys()] result.average_size = np.mean([h.size for h in hillas_dict.values()]) result.is_valid = True result.alt_uncert = err_est_dir result.az_uncert = np.nan result.h_max = h_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def predict(self, shower_seed, energy_seed): """ Parameters ---------- shower_seed: ReconstructedShowerContainer Seed shower geometry to be used in the fit energy_seed: ReconstructedEnergyContainer Seed energy to be used in fit Returns ------- ReconstructedShowerContainer, ReconstructedEnergyContainer: Reconstructed ImPACT shower geometry and energy """ horizon_seed = HorizonFrame(az=shower_seed.az, alt=shower_seed.alt) nominal_seed = horizon_seed.transform_to( NominalFrame(array_direction=self.array_direction)) print(nominal_seed) print(horizon_seed) print(self.array_direction) source_x = nominal_seed.x[0].to(u.rad).value source_y = nominal_seed.y[0].to(u.rad).value ground = GroundFrame(x=shower_seed.core_x, y=shower_seed.core_y, z=0 * u.m) tilted = ground.transform_to( TiltedGroundFrame(pointing_direction=self.array_direction)) tilt_x = tilted.x.to(u.m).value tilt_y = tilted.y.to(u.m).value lower_en_limit = energy_seed.energy * 0.5 en_seed = energy_seed.energy if lower_en_limit < 0.04 * u.TeV: lower_en_limit = 0.04 * u.TeV en_seed = 0.041 * u.TeV seed = (source_x, source_y, tilt_x, tilt_y, en_seed.value, 0.8) step = (0.001, 0.001, 10, 10, en_seed.value * 0.1, 0.1) limits = ((source_x - 0.01, source_x + 0.01), (source_y - 0.01, source_y + 0.01), (tilt_x - 100, tilt_x + 100), (tilt_y - 100, tilt_y + 100), (lower_en_limit.value, en_seed.value * 2), (0.5, 2)) fit_params, errors = self.minimise(params=seed, step=step, limits=limits, minimiser_name=self.minimiser_name) # container class for reconstructed showers ''' shower_result = ReconstructedShowerContainer() nominal = NominalFrame(x=fit_params[0] * u.rad, y=fit_params[1] * u.rad, array_direction=self.array_direction) horizon = nominal.transform_to(HorizonFrame()) shower_result.alt, shower_result.az = horizon.alt, horizon.az tilted = TiltedGroundFrame(x=fit_params[2] * u.m, y=fit_params[3] * u.m, pointing_direction=self.array_direction) ground = project_to_ground(tilted) shower_result.core_x = ground.x shower_result.core_y = ground.y shower_result.is_valid = True shower_result.alt_uncert = np.nan shower_result.az_uncert = np.nan shower_result.core_uncert = np.nan zenith = 90 * u.deg - self.array_direction.alt shower_result.h_max = fit_params[5] * \ self.get_shower_max(fit_params[0], fit_params[1], fit_params[2], fit_params[3], zenith.to(u.rad).value) shower_result.h_max_uncert = errors[5] * shower_result.h_max shower_result.goodness_of_fit = np.nan shower_result.tel_ids = list(self.image.keys()) energy_result = ReconstructedEnergyContainer() energy_result.energy = fit_params[4] * u.TeV energy_result.energy_uncert = errors[4] * u.TeV energy_result.is_valid = True energy_result.tel_ids = list(self.image.keys()) # Return interesting stuff return shower_result, energy_result
def predict(self, shower_seed, energy_seed): """ Parameters ---------- source_x: float Initial guess of source position in the nominal frame source_y: float Initial guess of source position in the nominal frame core_x: float Initial guess of the core position in the tilted system core_y: float Initial guess of the core position in the tilted system energy: float Initial guess of energy Returns ------- Shower object with fit results """ horizon_seed = HorizonFrame(az=shower_seed.az, alt=shower_seed.alt) nominal_seed = horizon_seed.transform_to( NominalFrame(array_direction=self.array_direction)) source_x = nominal_seed.x.to(u.rad).value source_y = nominal_seed.y.to(u.rad).value ground = GroundFrame(x=shower_seed.core_x, y=shower_seed.core_y, z=0 * u.m) tilted = ground.transform_to( TiltedGroundFrame(pointing_direction=self.array_direction)) tilt_x = tilted.x.to(u.m).value tilt_y = tilted.y.to(u.m).value lower_en_limit = energy_seed.energy * 0.1 if lower_en_limit < 0.04 * u.TeV: lower_en_limit = 0.04 * u.TeV # Create Minuit object with first guesses at parameters, strip away the # units as Minuit doesnt like them min = Minuit(self.get_likelihood, print_level=1, source_x=source_x, error_source_x=0.01 / 57.3, fix_source_x=False, limit_source_x=(source_x - 0.5 / 57.3, source_x + 0.5 / 57.3), source_y=source_y, error_source_y=0.01 / 57.3, fix_source_y=False, limit_source_y=(source_y - 0.5 / 57.3, source_y + 0.5 / 57.3), core_x=tilt_x, error_core_x=10, limit_core_x=(tilt_x - 200, tilt_x + 200), core_y=tilt_y, error_core_y=10, limit_core_y=(tilt_y - 200, tilt_y + 200), energy=energy_seed.energy.value, error_energy=energy_seed.energy.value * 0.05, limit_energy=(lower_en_limit.value, energy_seed.energy.value * 10.), x_max_scale=1, error_x_max_scale=0.1, limit_x_max_scale=(0.5, 2), fix_x_max_scale=False, errordef=1) min.tol *= 1000 min.strategy = 0 # Perform minimisation migrad = min.migrad() fit_params = min.values errors = min.errors # print(migrad) # print(min.minos()) # container class for reconstructed showers ''' shower_result = ReconstructedShowerContainer() nominal = NominalFrame(x=fit_params["source_x"] * u.rad, y=fit_params["source_y"] * u.rad, array_direction=self.array_direction) horizon = nominal.transform_to(HorizonFrame()) shower_result.alt, shower_result.az = horizon.alt, horizon.az tilted = TiltedGroundFrame(x=fit_params["core_x"] * u.m, y=fit_params["core_y"] * u.m, pointing_direction=self.array_direction) ground = project_to_ground(tilted) shower_result.core_x = ground.x shower_result.core_y = ground.y shower_result.is_valid = True shower_result.alt_uncert = np.nan shower_result.az_uncert = np.nan shower_result.core_uncert = np.nan zenith = 90 * u.deg - self.array_direction[0] shower_result.h_max = fit_params["x_max_scale"] * \ self.get_shower_max(fit_params["source_x"], fit_params["source_y"], fit_params["core_x"], fit_params["core_y"], zenith.to(u.rad).value) shower_result.h_max_uncert = errors["x_max_scale"] * shower_result.h_max shower_result.goodness_of_fit = np.nan shower_result.tel_ids = list(self.image.keys()) energy_result = ReconstructedEnergyContainer() energy_result.energy = fit_params["energy"] * u.TeV energy_result.energy_uncert = errors["energy"] * u.TeV energy_result.is_valid = True energy_result.tel_ids = list(self.image.keys()) # Return interesting stuff return shower_result, energy_result
def predict(self, shower_seed, energy_seed): """ Parameters ---------- shower_seed: ReconstructedShowerContainer Seed shower geometry to be used in the fit energy_seed: ReconstructedEnergyContainer Seed energy to be used in fit Returns ------- ReconstructedShowerContainer, ReconstructedEnergyContainer: Reconstructed ImPACT shower geometry and energy """ horizon_seed = HorizonFrame(az=shower_seed.az, alt=shower_seed.alt) nominal_seed = horizon_seed.transform_to(NominalFrame(array_direction=self.array_direction)) print(nominal_seed) print(horizon_seed) print(self.array_direction) source_x = nominal_seed.x[0].to(u.rad).value source_y = nominal_seed.y[0].to(u.rad).value ground = GroundFrame(x=shower_seed.core_x, y=shower_seed.core_y, z=0 * u.m) tilted = ground.transform_to( TiltedGroundFrame(pointing_direction=self.array_direction) ) tilt_x = tilted.x.to(u.m).value tilt_y = tilted.y.to(u.m).value lower_en_limit = energy_seed.energy * 0.5 en_seed = energy_seed.energy if lower_en_limit < 0.04 * u.TeV: lower_en_limit = 0.04 * u.TeV en_seed = 0.041 * u.TeV seed = (source_x, source_y, tilt_x, tilt_y, en_seed.value, 0.8) step = (0.001, 0.001, 10, 10, en_seed.value*0.1, 0.1) limits = ((source_x-0.01, source_x+0.01), (source_y-0.01, source_y+0.01), (tilt_x-100, tilt_x+100), (tilt_y-100, tilt_y+100), (lower_en_limit.value, en_seed.value*2), (0.5,2)) fit_params, errors = self.minimise(params=seed, step=step, limits=limits, minimiser_name=self.minimiser_name) # container class for reconstructed showers ''' shower_result = ReconstructedShowerContainer() nominal = NominalFrame(x=fit_params[0] * u.rad, y=fit_params[1] * u.rad, array_direction=self.array_direction) horizon = nominal.transform_to(HorizonFrame()) shower_result.alt, shower_result.az = horizon.alt, horizon.az tilted = TiltedGroundFrame(x=fit_params[2] * u.m, y=fit_params[3] * u.m, pointing_direction=self.array_direction) ground = project_to_ground(tilted) shower_result.core_x = ground.x shower_result.core_y = ground.y shower_result.is_valid = True shower_result.alt_uncert = np.nan shower_result.az_uncert = np.nan shower_result.core_uncert = np.nan zenith = 90*u.deg - self.array_direction.alt shower_result.h_max = fit_params[5] * \ self.get_shower_max(fit_params[0], fit_params[1], fit_params[2], fit_params[3], zenith.to(u.rad).value) shower_result.h_max_uncert = errors[5] * shower_result.h_max shower_result.goodness_of_fit = np.nan shower_result.tel_ids = list(self.image.keys()) energy_result = ReconstructedEnergyContainer() energy_result.energy = fit_params[4] * u.TeV energy_result.energy_uncert = errors[4] * u.TeV energy_result.is_valid = True energy_result.tel_ids = list(self.image.keys()) # Return interesting stuff return shower_result, energy_result
def predict(self, hillas_dict, inst, pointing_alt, pointing_az): ''' The function you want to call for the reconstruction of the event. It takes care of setting up the event and consecutively calls the functions for the direction and core position reconstruction. Shower parameters not reconstructed by this class are set to np.nan Parameters ----------- hillas_dict: dict dictionary with telescope IDs as key and HillasParametersContainer instances as values inst : ctapipe.io.InstrumentContainer instrumental description pointing_alt: dict[astropy.coordinates.Angle] dict mapping telescope ids to pointing altitude pointing_az: dict[astropy.coordinates.Angle] dict mapping telescope ids to pointing azimuth Raises ------ TooFewTelescopesException if len(hillas_dict) < 2 ''' # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}".format( len(hillas_dict))) self.initialize_hillas_planes(hillas_dict, inst.subarray, pointing_alt, pointing_az) # algebraic direction estimate direction, err_est_dir = self.estimate_direction() alt = u.Quantity(list(pointing_alt.values())) az = u.Quantity(list(pointing_az.values())) if np.any(alt != alt[0]) or np.any(az != az[0]): raise ValueError('Divergent pointing not supported') pointing_direction = SkyCoord(alt=alt[0], az=az[0], frame='altaz') # core position estimate using a geometric approach core_pos = self.estimate_core_position(hillas_dict, pointing_direction) # container class for reconstructed showers result = ReconstructedShowerContainer() _, lat, lon = cartesian_to_spherical(*direction) # estimate max height of shower h_max = self.estimate_h_max() # astropy's coordinates system rotates counter-clockwise. # Apparently we assume it to be clockwise. result.alt, result.az = lat, -lon result.core_x = core_pos[0] result.core_y = core_pos[1] result.core_uncert = np.nan result.tel_ids = [h for h in hillas_dict.keys()] result.average_size = np.mean( [h.intensity for h in hillas_dict.values()]) result.is_valid = True result.alt_uncert = err_est_dir result.az_uncert = np.nan result.h_max = h_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def predict(self, shower_seed, energy_seed): """ Parameters ---------- shower_seed: ReconstructedShowerContainer Seed shower geometry to be used in the fit energy_seed: ReconstructedEnergyContainer Seed energy to be used in fit Returns ------- ReconstructedShowerContainer, ReconstructedEnergyContainer: Reconstructed ImPACT shower geometry and energy """ horizon_seed = HorizonFrame(az=shower_seed.az, alt=shower_seed.alt) nominal_seed = horizon_seed.transform_to(NominalFrame( array_direction=self.array_direction)) source_x = nominal_seed.x.to(u.rad).value source_y = nominal_seed.y.to(u.rad).value ground = GroundFrame(x=shower_seed.core_x, y=shower_seed.core_y, z=0 * u.m) tilted = ground.transform_to( TiltedGroundFrame(pointing_direction=self.array_direction) ) tilt_x = tilted.x.to(u.m).value tilt_y = tilted.y.to(u.m).value zenith = 90 * u.deg - self.array_direction.alt if len(self.hillas_parameters) > 3: shift = [1] else: shift = [1.5, 1, 0.5, 0, -0.5, -1, -1.5] seed_list = spread_line_seed(self.hillas_parameters, self.tel_pos_x, self.tel_pos_y, source_x[0], source_y[0], tilt_x, tilt_y, energy_seed.energy.value, shift_frac = shift) chosen_seed = self.choose_seed(seed_list) # Perform maximum likelihood fit fit_params, errors, like = self.minimise(params=chosen_seed[0], step=chosen_seed[1], limits=chosen_seed[2], minimiser_name=self.minimiser_name) # Create a container class for reconstructed shower shower_result = ReconstructedShowerContainer() # Convert the best fits direction and core to Horizon and ground systems and # copy to the shower container nominal = NominalFrame(x=fit_params[0] * u.rad, y=fit_params[1] * u.rad, array_direction=self.array_direction) horizon = nominal.transform_to(HorizonFrame()) shower_result.alt, shower_result.az = horizon.alt, horizon.az tilted = TiltedGroundFrame(x=fit_params[2] * u.m, y=fit_params[3] * u.m, pointing_direction=self.array_direction) ground = project_to_ground(tilted) shower_result.core_x = ground.x shower_result.core_y = ground.y shower_result.is_valid = True # Currently no errors not availible to copy NaN shower_result.alt_uncert = np.nan shower_result.az_uncert = np.nan shower_result.core_uncert = np.nan # Copy reconstructed Xmax shower_result.h_max = fit_params[5] * self.get_shower_max(fit_params[0], fit_params[1], fit_params[2], fit_params[3], zenith.to(u.rad).value) shower_result.h_max *= np.cos(zenith) shower_result.h_max_uncert = errors[5] * shower_result.h_max shower_result.goodness_of_fit = like # Create a container class for reconstructed energy energy_result = ReconstructedEnergyContainer() # Fill with results energy_result.energy = fit_params[4] * u.TeV energy_result.energy_uncert = errors[4] * u.TeV energy_result.is_valid = True return shower_result, energy_result
def predict(self, hillas_dict, inst, pointing_alt, pointing_az): ''' The function you want to call for the reconstruction of the event. It takes care of setting up the event and consecutively calls the functions for the direction and core position reconstruction. Shower parameters not reconstructed by this class are set to np.nan Parameters ----------- hillas_dict: dict dictionary with telescope IDs as key and HillasParametersContainer instances as values inst : ctapipe.io.InstrumentContainer instrumental description pointing_alt: dict[astropy.coordinates.Angle] dict mapping telescope ids to pointing altitude pointing_az: dict[astropy.coordinates.Angle] dict mapping telescope ids to pointing azimuth Raises ------ TooFewTelescopesException if len(hillas_dict) < 2 InvalidWidthException if any width is np.nan or 0 ''' # filter warnings for missing obs time. this is needed because MC data has no obs time warnings.filterwarnings(action='ignore', category=MissingFrameAttributeWarning) # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}".format( len(hillas_dict))) # check for np.nan or 0 width's as these screw up weights if any( [np.isnan(hillas_dict[tel]['width'].value) for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==np.nan") if any([hillas_dict[tel]['width'].value == 0 for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==0") self.initialize_hillas_planes(hillas_dict, inst.subarray, pointing_alt, pointing_az) # algebraic direction estimate direction, err_est_dir = self.estimate_direction() alt = u.Quantity(list(pointing_alt.values())) az = u.Quantity(list(pointing_az.values())) if np.any(alt != alt[0]) or np.any(az != az[0]): warnings.warn('Divergent pointing not supported') telescope_pointing = SkyCoord(alt=alt[0], az=az[0], frame=AltAz()) # core position estimate using a geometric approach core_pos = self.estimate_core_position(hillas_dict, telescope_pointing) # container class for reconstructed showers result = ReconstructedShowerContainer() _, lat, lon = cartesian_to_spherical(*direction) # estimate max height of shower h_max = self.estimate_h_max() # astropy's coordinates system rotates counter-clockwise. # Apparently we assume it to be clockwise. result.alt, result.az = lat, -lon result.core_x = core_pos[0] result.core_y = core_pos[1] result.core_uncert = np.nan result.tel_ids = [h for h in hillas_dict.keys()] result.average_intensity = np.mean( [h.intensity for h in hillas_dict.values()]) result.is_valid = True result.alt_uncert = err_est_dir result.az_uncert = np.nan result.h_max = h_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def predict(self, shower_seed, energy_seed): """Predict method for the ImPACT reconstructor. Used to calculate the reconstructed ImPACT shower geometry and energy. Parameters ---------- shower_seed: ReconstructedShowerContainer Seed shower geometry to be used in the fit energy_seed: ReconstructedEnergyContainer Seed energy to be used in fit Returns ------- ReconstructedShowerContainer, ReconstructedEnergyContainer: """ self.reset_interpolator() horizon_seed = SkyCoord(az=shower_seed.az, alt=shower_seed.alt, frame=AltAz()) nominal_seed = horizon_seed.transform_to(self.nominal_frame) source_x = nominal_seed.delta_az.to_value(u.rad) source_y = nominal_seed.delta_alt.to_value(u.rad) ground = GroundFrame(x=shower_seed.core_x, y=shower_seed.core_y, z=0 * u.m) tilted = ground.transform_to( TiltedGroundFrame(pointing_direction=self.array_direction)) tilt_x = tilted.x.to(u.m).value tilt_y = tilted.y.to(u.m).value zenith = 90 * u.deg - self.array_direction.alt seeds = spread_line_seed(self.hillas_parameters, self.tel_pos_x, self.tel_pos_y, source_x, source_y, tilt_x, tilt_y, energy_seed.energy.value, shift_frac=[1])[0] # Perform maximum likelihood fit fit_params, errors, like = self.minimise( params=seeds[0], step=seeds[1], limits=seeds[2], minimiser_name=self.minimiser_name) # Create a container class for reconstructed shower shower_result = ReconstructedShowerContainer() # Convert the best fits direction and core to Horizon and ground systems and # copy to the shower container nominal = SkyCoord(delta_az=fit_params[0] * u.rad, delta_alt=fit_params[1] * u.rad, frame=self.nominal_frame) horizon = nominal.transform_to(AltAz()) shower_result.alt, shower_result.az = horizon.alt, horizon.az tilted = TiltedGroundFrame(x=fit_params[2] * u.m, y=fit_params[3] * u.m, pointing_direction=self.array_direction) ground = project_to_ground(tilted) shower_result.core_x = ground.x shower_result.core_y = ground.y shower_result.is_valid = True # Currently no errors not available to copy NaN shower_result.alt_uncert = np.nan shower_result.az_uncert = np.nan shower_result.core_uncert = np.nan # Copy reconstructed Xmax shower_result.h_max = fit_params[5] * self.get_shower_max( fit_params[0], fit_params[1], fit_params[2], fit_params[3], zenith.to(u.rad).value) shower_result.h_max *= np.cos(zenith) shower_result.h_max_uncert = errors[5] * shower_result.h_max shower_result.goodness_of_fit = like # Create a container class for reconstructed energy energy_result = ReconstructedEnergyContainer() # Fill with results energy_result.energy = fit_params[4] * u.TeV energy_result.energy_uncert = errors[4] * u.TeV energy_result.is_valid = True return shower_result, energy_result
def predict(self, hillas_dict, inst, pointing_alt, pointing_az): ''' The function you want to call for the reconstruction of the event. It takes care of setting up the event and consecutively calls the functions for the direction and core position reconstruction. Shower parameters not reconstructed by this class are set to np.nan Parameters ----------- hillas_dict: dict dictionary with telescope IDs as key and HillasParametersContainer instances as values inst : ctapipe.io.InstrumentContainer instrumental description pointing_alt: dict[astropy.coordinates.Angle] dict mapping telescope ids to pointing altitude pointing_az: dict[astropy.coordinates.Angle] dict mapping telescope ids to pointing azimuth Raises ------ TooFewTelescopesException if len(hillas_dict) < 2 ''' # filter warnings for missing obs time. this is needed because MC data has no obs time warnings.filterwarnings(action='ignore', category=MissingFrameAttributeWarning) # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}" .format(len(hillas_dict))) self.initialize_hillas_planes( hillas_dict, inst.subarray, pointing_alt, pointing_az ) # algebraic direction estimate direction, err_est_dir = self.estimate_direction() alt = u.Quantity(list(pointing_alt.values())) az = u.Quantity(list(pointing_az.values())) if np.any(alt != alt[0]) or np.any(az != az[0]): warnings.warn('Divergent pointing not supported') telescope_pointing = SkyCoord(alt=alt[0], az=az[0], frame=HorizonFrame()) # core position estimate using a geometric approach core_pos = self.estimate_core_position(hillas_dict, telescope_pointing) # container class for reconstructed showers result = ReconstructedShowerContainer() _, lat, lon = cartesian_to_spherical(*direction) # estimate max height of shower h_max = self.estimate_h_max() # astropy's coordinates system rotates counter-clockwise. # Apparently we assume it to be clockwise. result.alt, result.az = lat, -lon result.core_x = core_pos[0] result.core_y = core_pos[1] result.core_uncert = np.nan result.tel_ids = [h for h in hillas_dict.keys()] result.average_intensity = np.mean([h.intensity for h in hillas_dict.values()]) result.is_valid = True result.alt_uncert = err_est_dir result.az_uncert = np.nan result.h_max = h_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def predict(self, shower_seed, energy_seed): """ Parameters ---------- shower_seed: ReconstructedShowerContainer Seed shower geometry to be used in the fit energy_seed: ReconstructedEnergyContainer Seed energy to be used in fit Returns ------- ReconstructedShowerContainer, ReconstructedEnergyContainer: Reconstructed ImPACT shower geometry and energy """ horizon_seed = SkyCoord( az=shower_seed.az, alt=shower_seed.alt, frame=HorizonFrame() ) nominal_seed = horizon_seed.transform_to( NominalFrame(origin=self.array_direction) ) source_x = nominal_seed.delta_az.to_value(u.rad) source_y = nominal_seed.delta_alt.to_value(u.rad) ground = GroundFrame(x=shower_seed.core_x, y=shower_seed.core_y, z=0 * u.m) tilted = ground.transform_to( TiltedGroundFrame(pointing_direction=self.array_direction) ) tilt_x = tilted.x.to(u.m).value tilt_y = tilted.y.to(u.m).value zenith = 90 * u.deg - self.array_direction.alt if len(self.hillas_parameters) > 3: shift = [1] else: shift = [1.5, 1, 0.5, 0, -0.5, -1, -1.5] seed_list = spread_line_seed(self.hillas_parameters, self.tel_pos_x, self.tel_pos_y, source_x[0], source_y[0], tilt_x, tilt_y, energy_seed.energy.value, shift_frac = shift) chosen_seed = self.choose_seed(seed_list) # Perform maximum likelihood fit fit_params, errors, like = self.minimise(params=chosen_seed[0], step=chosen_seed[1], limits=chosen_seed[2], minimiser_name=self.minimiser_name) # Create a container class for reconstructed shower shower_result = ReconstructedShowerContainer() # Convert the best fits direction and core to Horizon and ground systems and # copy to the shower container nominal = SkyCoord( x=fit_params[0] * u.rad, y=fit_params[1] * u.rad, frame=NominalFrame(origin=self.array_direction) ) horizon = nominal.transform_to(HorizonFrame()) shower_result.alt, shower_result.az = horizon.alt, horizon.az tilted = TiltedGroundFrame( x=fit_params[2] * u.m, y=fit_params[3] * u.m, pointing_direction=self.array_direction ) ground = project_to_ground(tilted) shower_result.core_x = ground.x shower_result.core_y = ground.y shower_result.is_valid = True # Currently no errors not availible to copy NaN shower_result.alt_uncert = np.nan shower_result.az_uncert = np.nan shower_result.core_uncert = np.nan # Copy reconstructed Xmax shower_result.h_max = fit_params[5] * self.get_shower_max(fit_params[0], fit_params[1], fit_params[2], fit_params[3], zenith.to(u.rad).value) shower_result.h_max *= np.cos(zenith) shower_result.h_max_uncert = errors[5] * shower_result.h_max shower_result.goodness_of_fit = like # Create a container class for reconstructed energy energy_result = ReconstructedEnergyContainer() # Fill with results energy_result.energy = fit_params[4] * u.TeV energy_result.energy_uncert = errors[4] * u.TeV energy_result.is_valid = True return shower_result, energy_result
def predict(self, shower_seed, energy_seed): """ Parameters ---------- source_x: float Initial guess of source position in the nominal frame source_y: float Initial guess of source position in the nominal frame core_x: float Initial guess of the core position in the tilted system core_y: float Initial guess of the core position in the tilted system energy: float Initial guess of energy Returns ------- Shower object with fit results """ horizon_seed = HorizonFrame(az=shower_seed.az, alt=shower_seed.alt) nominal_seed = horizon_seed.transform_to( NominalFrame(array_direction=self.array_direction) ) source_x = nominal_seed.x.to(u.rad).value source_y = nominal_seed.y.to(u.rad).value ground = GroundFrame(x=shower_seed.core_x, y=shower_seed.core_y, z=0 * u.m) tilted = ground.transform_to( TiltedGroundFrame(pointing_direction=self.array_direction) ) tilt_x = tilted.x.to(u.m).value tilt_y = tilted.y.to(u.m).value lower_en_limit = energy_seed.energy * 0.1 if lower_en_limit < 0.04 * u.TeV: lower_en_limit = 0.04 * u.TeV # Create Minuit object with first guesses at parameters, strip away the # units as Minuit doesnt like them min = Minuit(self.get_likelihood, print_level=1, source_x=source_x, error_source_x=0.01 / 57.3, fix_source_x=False, limit_source_x=(source_x - 0.5 / 57.3, source_x + 0.5 / 57.3), source_y=source_y, error_source_y=0.01 / 57.3, fix_source_y=False, limit_source_y=(source_y - 0.5 / 57.3, source_y + 0.5 / 57.3), core_x=tilt_x, error_core_x=10, limit_core_x=(tilt_x - 200, tilt_x + 200), core_y=tilt_y, error_core_y=10, limit_core_y=(tilt_y - 200, tilt_y + 200), energy=energy_seed.energy.value, error_energy=energy_seed.energy.value * 0.05, limit_energy=(lower_en_limit.value, energy_seed.energy.value * 10.), x_max_scale=1, error_x_max_scale=0.1, limit_x_max_scale=(0.5, 2), fix_x_max_scale=False, errordef=1) min.tol *= 1000 min.strategy = 0 # Perform minimisation migrad = min.migrad() fit_params = min.values errors = min.errors # print(migrad) # print(min.minos()) # container class for reconstructed showers ''' shower_result = ReconstructedShowerContainer() nominal = NominalFrame(x=fit_params["source_x"] * u.rad, y=fit_params["source_y"] * u.rad, array_direction=self.array_direction) horizon = nominal.transform_to(HorizonFrame()) shower_result.alt, shower_result.az = horizon.alt, horizon.az tilted = TiltedGroundFrame(x=fit_params["core_x"] * u.m, y=fit_params["core_y"] * u.m, pointing_direction=self.array_direction) ground = project_to_ground(tilted) shower_result.core_x = ground.x shower_result.core_y = ground.y shower_result.is_valid = True shower_result.alt_uncert = np.nan shower_result.az_uncert = np.nan shower_result.core_uncert = np.nan zenith = 90 * u.deg - self.array_direction[0] shower_result.h_max = fit_params["x_max_scale"] * \ self.get_shower_max(fit_params["source_x"], fit_params["source_y"], fit_params["core_x"], fit_params["core_y"], zenith.to(u.rad).value) shower_result.h_max_uncert = errors["x_max_scale"] * shower_result.h_max shower_result.goodness_of_fit = np.nan shower_result.tel_ids = list(self.image.keys()) energy_result = ReconstructedEnergyContainer() energy_result.energy = fit_params["energy"] * u.TeV energy_result.energy_uncert = errors["energy"] * u.TeV energy_result.is_valid = True energy_result.tel_ids = list(self.image.keys()) # Return interesting stuff return shower_result, energy_result
def predict(self, hillas_dict, inst, tel_phi, tel_theta, seed_pos=(0, 0)): """The function you want to call for the reconstruction of the event. It takes care of setting up the event and consecutively calls the functions for the direction and core position reconstruction. Shower parameters not reconstructed by this class are set to np.nan Parameters ----------- hillas_dict : python dictionary dictionary with telescope IDs as key and MomentParameters instances as values seed_pos : python tuple shape (2) tuple with a possible seed for the core position fit (e.g. CoG of all telescope images) Raises ------ TooFewTelescopesException if len(hillas_dict) < 2 """ # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}".format( len(hillas_dict))) self.get_great_circles(hillas_dict, inst.subarray, tel_phi, tel_theta) # algebraic direction estimate dir, err_est_dir = self.fit_origin_crosses() # core position estimate using a geometric approach pos, err_est_pos = self.fit_core_crosses() # numerical minimisations do not really improve the fit # direction estimate using numerical minimisation # dir = self.fit_origin_minimise(dir) # # core position estimate using numerical minimisation # pos = self.fit_core_minimise(seed_pos) # container class for reconstructed showers result = ReconstructedShowerContainer() phi, theta = linalg.get_phi_theta(dir).to(u.deg) # TODO fix coordinates! result.alt, result.az = 90 * u.deg - theta, -phi result.core_x = pos[0] result.core_y = pos[1] result.core_uncert = err_est_pos result.tel_ids = [h for h in hillas_dict.keys()] result.average_size = np.mean([h.size for h in hillas_dict.values()]) result.is_valid = True result.alt_uncert = err_est_dir result.az_uncert = np.nan result.h_max = self.fit_h_max(hillas_dict, inst.subarray, tel_phi, tel_theta) result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def process_event(event, calibrator, config): '''Processes one event. Calls calculate_image_features and performs a stereo hillas reconstruction. ReconstructedShowerContainer will be filled with nans (+units) if hillas failed. Returns: -------- ArrayEventContainer list(telescope_event_containers.values()) ''' logging.info(f'processing event {event.dl0.event_id}') calibrator(event) telescope_types = [] hillas_reconstructor = HillasReconstructor() telescope_event_containers = {} horizon_frame = AltAz() telescope_pointings = {} array_pointing = SkyCoord( az=event.mcheader.run_array_direction[0], alt=event.mcheader.run_array_direction[1], frame=horizon_frame, ) for telescope_id, dl1 in event.dl1.tel.items(): cam_type = event.inst.subarray.tels[telescope_id].camera.cam_id if cam_type not in config.cleaning_level.keys(): logging.info(f"No cleaning levels for camera {cam_type}. Skipping event") continue telescope_types.append(str(event.inst.subarray.tels[telescope_id].optics)) try: telescope_event_containers[telescope_id] = calculate_image_features( telescope_id, event, dl1, config ) except HillasParameterizationError: logging.info( f'Error calculating hillas features for event {event.dl0.event_id, telescope_id}', exc_info=True, ) continue except Exception: logging.info( f'Error calculating image features for event {event.dl0.event_id, telescope_id}', exc_info=True, ) continue telescope_pointings[telescope_id] = SkyCoord( alt=telescope_event_containers[telescope_id].pointing.altitude, az=telescope_event_containers[telescope_id].pointing.azimuth, frame=horizon_frame, ) if len(telescope_event_containers) < 1: raise Exception('None of the allowed telescopes triggered for event %s', event.dl0.event_id) parameters = {tel_id: telescope_event_containers[tel_id].hillas for tel_id in telescope_event_containers} try: reconstruction_container = hillas_reconstructor.predict( parameters, event.inst, array_pointing, telescopes_pointings=telescope_pointings ) reconstruction_container.prefix = '' except Exception: logging.info( 'Not enough telescopes for which Hillas parameters could be reconstructed', exc_info=True ) reconstruction_container = ReconstructedShowerContainer() reconstruction_container.alt = u.Quantity(np.nan, u.rad) reconstruction_container.alt_uncert = u.Quantity(np.nan, u.rad) reconstruction_container.az = u.Quantity(np.nan, u.rad) reconstruction_container.az_uncert = np.nan reconstruction_container.core_x = u.Quantity(np.nan, u.m) reconstruction_container.core_y = u.Quantity(np.nan, u.m) reconstruction_container.core_uncert = np.nan reconstruction_container.h_max = u.Quantity(np.nan, u.m) reconstruction_container.h_max_uncert = np.nan reconstruction_container.is_valid = False reconstruction_container.tel_ids = [] reconstruction_container.average_intensity = np.nan reconstruction_container.goodness_of_fit = np.nan reconstruction_container.prefix = '' calculate_distance_to_core(telescope_event_containers, event, reconstruction_container) mc_container = copy.deepcopy(event.mc) mc_container.tel = None mc_container.prefix = 'mc' counter = Counter(telescope_types) array_event = ArrayEventContainer( array_event_id=event.dl0.event_id, run_id=event.r0.obs_id, reco=reconstruction_container, total_intensity=sum([t.hillas.intensity for t in telescope_event_containers.values()]), num_triggered_lst=counter['LST'], num_triggered_mst=counter['MST'], num_triggered_sst=counter['SST'], num_triggered_telescopes=len(telescope_types), mc=mc_container, ) return array_event, list(telescope_event_containers.values())
def predict(self, hillas_dict, inst, array_pointing, telescopes_pointings=None): """ Parameters ---------- hillas_dict: dict Dictionary containing Hillas parameters for all telescopes in reconstruction inst : ctapipe.io.InstrumentContainer instrumental description array_pointing: SkyCoord[AltAz] pointing direction of the array telescopes_pointings: dict[SkyCoord[AltAz]] dictionary of pointing direction per each telescope Returns ------- ReconstructedShowerContainer: """ # filter warnings for missing obs time. this is needed because MC data has no obs time warnings.filterwarnings(action='ignore', category=MissingFrameAttributeWarning) # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}".format( len(hillas_dict))) # check for np.nan or 0 width's as these screw up weights if any( [np.isnan(hillas_dict[tel]['width'].value) for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==np.nan") if any([hillas_dict[tel]['width'].value == 0 for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==0") if telescopes_pointings is None: telescopes_pointings = { tel_id: array_pointing for tel_id in hillas_dict.keys() } tilted_frame = TiltedGroundFrame(pointing_direction=array_pointing) ground_positions = inst.subarray.tel_coords grd_coord = GroundFrame(x=ground_positions.x, y=ground_positions.y, z=ground_positions.z) tilt_coord = grd_coord.transform_to(tilted_frame) tel_x = { tel_id: tilt_coord.x[tel_id - 1] for tel_id in list(hillas_dict.keys()) } tel_y = { tel_id: tilt_coord.y[tel_id - 1] for tel_id in list(hillas_dict.keys()) } nom_frame = NominalFrame(origin=array_pointing) hillas_dict_mod = copy.deepcopy(hillas_dict) for tel_id, hillas in hillas_dict_mod.items(): # prevent from using rads instead of meters as inputs assert hillas.x.to(u.m).unit == u.Unit('m') focal_length = inst.subarray.tel[ tel_id].optics.equivalent_focal_length camera_frame = CameraFrame( telescope_pointing=telescopes_pointings[tel_id], focal_length=focal_length, ) cog_coords = SkyCoord(x=hillas.x, y=hillas.y, frame=camera_frame) cog_coords_nom = cog_coords.transform_to(nom_frame) hillas.x = cog_coords_nom.delta_alt hillas.y = cog_coords_nom.delta_az src_x, src_y, err_x, err_y = self.reconstruct_nominal(hillas_dict_mod) core_x, core_y, core_err_x, core_err_y = self.reconstruct_tilted( hillas_dict_mod, tel_x, tel_y) err_x *= u.rad err_y *= u.rad nom = SkyCoord(delta_az=src_x * u.rad, delta_alt=src_y * u.rad, frame=nom_frame) # nom = sky_pos.transform_to(nom_frame) sky_pos = nom.transform_to(array_pointing.frame) result = ReconstructedShowerContainer() result.alt = sky_pos.altaz.alt.to(u.rad) result.az = sky_pos.altaz.az.to(u.rad) tilt = SkyCoord( x=core_x * u.m, y=core_y * u.m, frame=tilted_frame, ) grd = project_to_ground(tilt) result.core_x = grd.x result.core_y = grd.y x_max = self.reconstruct_xmax( nom.delta_az, nom.delta_alt, tilt.x, tilt.y, hillas_dict_mod, tel_x, tel_y, 90 * u.deg - array_pointing.alt, ) result.core_uncert = np.sqrt(core_err_x**2 + core_err_y**2) * u.m result.tel_ids = [h for h in hillas_dict_mod.keys()] result.average_intensity = np.mean( [h.intensity for h in hillas_dict_mod.values()]) result.is_valid = True src_error = np.sqrt(err_x**2 + err_y**2) result.alt_uncert = src_error.to(u.rad) result.az_uncert = src_error.to(u.rad) result.h_max = x_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def predict(self, hillas_dict, inst, array_pointing, telescopes_pointings=None): """ The function you want to call for the reconstruction of the event. It takes care of setting up the event and consecutively calls the functions for the direction and core position reconstruction. Shower parameters not reconstructed by this class are set to np.nan Parameters ----------- hillas_dict: dict dictionary with telescope IDs as key and HillasParametersContainer instances as values inst : ctapipe.io.InstrumentContainer instrumental description array_pointing: SkyCoord[AltAz] pointing direction of the array telescopes_pointings: dict[SkyCoord[AltAz]] dictionary of pointing direction per each telescope Raises ------ TooFewTelescopesException if len(hillas_dict) < 2 InvalidWidthException if any width is np.nan or 0 """ # filter warnings for missing obs time. this is needed because MC data has no obs time warnings.filterwarnings(action='ignore', category=MissingFrameAttributeWarning) # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}".format( len(hillas_dict))) # check for np.nan or 0 width's as these screw up weights if any( [np.isnan(hillas_dict[tel]['width'].value) for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==np.nan") if any([hillas_dict[tel]['width'].value == 0 for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==0") # use the single telescope pointing also for parallel pointing: code is more general if telescopes_pointings is None: telescopes_pointings = { tel_id: array_pointing for tel_id in hillas_dict.keys() } else: self.divergent_mode = True self.corrected_angle_dict = {} self.initialize_hillas_planes(hillas_dict, inst.subarray, telescopes_pointings, array_pointing) # algebraic direction estimate direction, err_est_dir = self.estimate_direction() # array pointing is needed to define the tilted frame core_pos = self.estimate_core_position(hillas_dict, array_pointing) # container class for reconstructed showers result = ReconstructedShowerContainer() _, lat, lon = cartesian_to_spherical(*direction) # estimate max height of shower h_max = self.estimate_h_max() # astropy's coordinates system rotates counter-clockwise. # Apparently we assume it to be clockwise. result.alt, result.az = lat, -lon result.core_x = core_pos[0] result.core_y = core_pos[1] result.core_uncert = np.nan result.tel_ids = [h for h in hillas_dict.keys()] result.average_intensity = np.mean( [h.intensity for h in hillas_dict.values()]) result.is_valid = True result.alt_uncert = err_est_dir result.az_uncert = np.nan result.h_max = h_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result