class TestImPACT(): @classmethod def setup_class(self): self.impact_reco = ImPACTReconstructor(root_dir=".") self.horizon_frame = AltAz() self.h1 = HillasParametersContainer(x=1 * u.deg, y=1 * u.deg, r=1 * u.deg, phi=Angle(0 * u.rad), intensity=100, length=0.4 * u.deg, width=0.4 * u.deg, psi=Angle(0 * u.rad), skewness=0, kurtosis=0) #@pytest.mark.skip('need a dataset for this to work') def test_brightest_mean_average(self): """ Test that averaging of the brightest pixel position give a sensible outcome """ image = np.array([1, 1, 1, 1]) pixel_x = np.array([0., 1., 0., -1.]) * u.deg pixel_y = np.array([-1., 0., 1., 0.]) * u.deg array_pointing = SkyCoord(alt=0 * u.deg, az=0 * u.deg, frame=self.horizon_frame) self.impact_reco.set_event_properties({1: image}, {1: image}, {1: pixel_x}, {1: pixel_y}, {1: "DUMMY"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=array_pointing, hillas={1: self.h1}) self.impact_reco.get_hillas_mean() assert_allclose(self.impact_reco.peak_x[0] * (180 / np.pi), 1, rtol=0, atol=0.001) assert_allclose(self.impact_reco.peak_y[0] * (180 / np.pi), 1, rtol=0, atol=0.001) def test_rotation(self): """Test pixel rotation function""" x = np.array([1]) y = np.array([0]) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 0, 0, np.deg2rad(90)) assert_allclose(xt, 0, rtol=0, atol=0.001) assert_allclose(yt, 1, rtol=0, atol=0.001) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 0, 0, np.deg2rad(180)) assert_allclose(xt, 1, rtol=0, atol=0.001) assert_allclose(yt, 0, rtol=0, atol=0.001) def test_translation(self): """Test pixel translation function""" x = np.array([0]) y = np.array([0]) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 1, 1, np.array([0])) assert_allclose(xt, 1, rtol=0, atol=0.001) assert_allclose(yt, -1, rtol=0, atol=0.001) def test_xmax_calculation(self): """Test calculation of hmax and interpolation of Xmax tables""" image = np.array([1, 1, 1]) pixel_x = np.array([1, 1, 1]) * u.deg pixel_y = np.array([1, 1, 1]) * u.deg array_pointing = SkyCoord(alt=0 * u.deg, az=0 * u.deg, frame=self.horizon_frame) self.impact_reco.set_event_properties({1: image}, {1: image}, {1: pixel_x}, {1: pixel_y}, {1: "DUMMY"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=array_pointing, hillas={1: self.h1}) shower_max = self.impact_reco.get_shower_max(0, 0, 0, 100, 0) assert_allclose(shower_max, 484.2442217190515, rtol=0.01) @pytest.mark.skip('need a dataset for this to work') def test_image_prediction(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties( {1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) """First check image prediction by directly accessing the function""" pred = self.impact_reco.image_prediction("CHEC", zenith=0, azimuth=0, energy=1, impact=50, x_max=0, pix_x=pixel_x, pix_y=pixel_y) assert np.sum(pred) != 0 """Then check helper function gives the same answer""" shower = ReconstructedShowerContainer() shower.is_valid = True shower.alt = 0 * u.deg shower.az = 0 * u.deg shower.core_x = 0 * u.m shower.core_y = 100 * u.m shower.h_max = 300 + 93 * np.log10(1) energy = ReconstructedEnergyContainer() energy.is_valid = True energy.energy = 1 * u.TeV pred2 = self.impact_reco.get_prediction(1, shower_reco=shower, energy_reco=energy) print(pred, pred2) assert pred.all() == pred2.all() @pytest.mark.skip('need a dataset for this to work') def test_likelihood(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties( {1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) like = self.impact_reco.get_likelihood(0, 0, 0, 100, 1, 0) assert like is not np.nan and like > 0
class TestImPACT(): @classmethod def setup_class(self): self.impact_reco = ImPACTReconstructor(root_dir=".") self.h1 = HillasParametersContainer(x=1 * u.deg, y=1 * u.deg, r=1 * u.deg, phi=Angle(0 * u.rad), intensity=100, length=0.4 * u.deg, width=0.4 * u.deg, psi=Angle(0 * u.rad), skewness=0, kurtosis=0) #@pytest.mark.skip('need a dataset for this to work') def test_brightest_mean_average(self): """ Test that averaging of the brightest pixel position give a sensible outcome """ image = np.array([1, 1, 1, 1]) pixel_x = np.array([0., 1., 0., -1.]) * u.deg pixel_y = np.array([-1., 0., 1., 0.]) * u.deg self.impact_reco.set_event_properties({1: image}, {1: image}, {1: pixel_x},{1: pixel_y}, {1: "DUMMY"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg], hillas={1:self.h1}) self.impact_reco.get_hillas_mean() assert_allclose(self.impact_reco.peak_x[0]*(180/np.pi), 1, rtol=0, atol=0.001) assert_allclose(self.impact_reco.peak_y[0]*(180/np.pi), 1, rtol=0, atol=0.001) def test_rotation(self): """Test pixel rotation function""" x = np.array([1]) y = np.array([0]) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 0, 0, np.deg2rad(90)) assert_allclose(xt, 0, rtol=0, atol=0.001) assert_allclose(yt, 1, rtol=0, atol=0.001) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 0, 0, np.deg2rad(180)) assert_allclose(xt, 1, rtol=0, atol=0.001) assert_allclose(yt, 0, rtol=0, atol=0.001) def test_translation(self): """Test pixel translation function""" x = np.array([0]) y = np.array([0]) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 1, 1, np.array([0])) assert_allclose(xt, 1, rtol=0, atol=0.001) assert_allclose(yt, -1, rtol=0, atol=0.001) def test_xmax_calculation(self): """Test calculation of hmax and interpolation of Xmax tables""" image = np.array([1, 1, 1]) pixel_x = np.array([1, 1, 1]) * u.deg pixel_y = np.array([1, 1, 1]) * u.deg self.impact_reco.set_event_properties({1: image}, {1: image}, {1: pixel_x},{1: pixel_y}, {1: "DUMMY"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg], hillas={1:self.h1}) shower_max = self.impact_reco.get_shower_max(0, 0, 0, 100, 0) assert_allclose(shower_max, 484.2442217190515 , rtol=0.01) @pytest.mark.skip('need a dataset for this to work') def test_image_prediction(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties({1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) """First check image prediction by directly accessing the function""" pred = self.impact_reco.image_prediction("CHEC", zenith=0, azimuth=0, energy=1, impact=50, x_max=0, pix_x=pixel_x, pix_y=pixel_y) assert np.sum(pred) != 0 """Then check helper function gives the same answer""" shower = ReconstructedShowerContainer() shower.is_valid = True shower.alt = 0 * u.deg shower.az = 0 * u.deg shower.core_x = 0 * u.m shower.core_y = 100 * u.m shower.h_max = 300 + 93 * np.log10(1) energy = ReconstructedEnergyContainer() energy.is_valid = True energy.energy = 1 * u.TeV pred2 = self.impact_reco.get_prediction(1, shower_reco=shower, energy_reco=energy) print(pred, pred2) assert pred.all() == pred2.all() @pytest.mark.skip('need a dataset for this to work') def test_likelihood(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties({1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) like = self.impact_reco.get_likelihood(0, 0, 0, 100, 1, 0) assert like is not np.nan and like > 0
class TestImPACT(): @classmethod def setup_class(self): self.impact_reco = ImPACTReconstructor(root_dir=".") @pytest.mark.skip('need a dataset for this to work') def test_brightest_mean_average(self): """ Test that averaging of the brightest pixel position give a sensible outcome """ image = np.array([1, 1, 1, 1]) pixel_x = np.array([0., 1., 0., -1.]) * u.deg pixel_y = np.array([-1., 0., 1., 0.]) * u.deg pixel_area = np.array([0, 0, 0, 0]) * u.deg * u.deg self.impact_reco.set_event_properties({1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, {1: 0 * u.m}) self.impact_reco.get_brightest_mean() assert_allclose(self.impact_reco.peak_x[0], 0, rtol=0, atol=0.001) assert_allclose(self.impact_reco.peak_y[0], 0, rtol=0, atol=0.001) @pytest.mark.skip('need a dataset for this to work') def test_brightest_mean_sort(self): """ Test that pixels are sorted into the correct order """ image = np.array([1, 1, 1, 0]) pixel_x = np.array([1, 1, 1, 0]) * u.rad pixel_y = np.array([1, 1, 1, 0.]) * u.rad pixel_area = np.array([0, 0, 0, 0]) * u.deg * u.deg self.impact_reco.set_event_properties({1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, {1: 0 * u.m}) self.impact_reco.get_brightest_mean() assert_allclose(self.impact_reco.peak_x[0], 1, rtol=0, atol=0.001) assert_allclose(self.impact_reco.peak_y[0], 1, rtol=0, atol=0.001) def test_rotation(self): """Test pixel rotation function""" x = np.array([1]) y = np.array([0]) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 0, 0, np.deg2rad(90)) assert_allclose(xt, 0, rtol=0, atol=0.001) assert_allclose(yt, 1, rtol=0, atol=0.001) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 0, 0, np.deg2rad(180)) assert_allclose(xt, -1, rtol=0, atol=0.001) assert_allclose(yt, 0, rtol=0, atol=0.001) def test_translation(self): """Test pixel translation function""" x = np.array([0]) y = np.array([0]) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 1, 1, 0) assert_allclose(xt, -1, rtol=0, atol=0.001) assert_allclose(yt, -1, rtol=0, atol=0.001) @pytest.mark.skip('need a dataset for this to work') def test_xmax_calculation(self): """Test calculation of hmax and interpolation of Xmax tables""" image = np.array([1, 1, 1]) pixel_x = np.array([1, 1, 1]) * u.deg pixel_y = np.array([1, 1, 1]) * u.deg pixel_area = np.array([0, 0, 0]) * u.deg * u.deg self.impact_reco.set_event_properties( {1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) shower_max = self.impact_reco.get_shower_max(0, 0, 0, 100, 0) assert_allclose(shower_max, 486.85820802 * u.g / (u.cm * u.cm), rtol=0.01) @pytest.mark.skip('need a dataset for this to work') def test_image_prediction(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties( {1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) """First check image prediction by directly accessing the function""" pred = self.impact_reco.image_prediction("CHEC", zenith=0, azimuth=0, energy=1, impact=50, x_max=0, pix_x=pixel_x, pix_y=pixel_y) assert np.sum(pred) != 0 """Then check helper function gives the same answer""" shower = ReconstructedShowerContainer() shower.is_valid = True shower.alt = 0 * u.deg shower.az = 0 * u.deg shower.core_x = 0 * u.m shower.core_y = 100 * u.m shower.h_max = 300 + 93 * np.log10(1) energy = ReconstructedEnergyContainer() energy.is_valid = True energy.energy = 1 * u.TeV pred2 = self.impact_reco.get_prediction(1, shower_reco=shower, energy_reco=energy) print(pred, pred2) assert pred.all() == pred2.all() @pytest.mark.skip('need a dataset for this to work') def test_likelihood(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties( {1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg]) like = self.impact_reco.get_likelihood(0, 0, 0, 100, 1, 0) assert like is not np.nan and like > 0
class ImPACTReconstruction(Tool): """ """ description = "ImPACTReco" name='ctapipe-ImPACT-reco' infile = Unicode(help='input simtelarray file').tag(config=True) outfile = Unicode(help='output fits table').tag(config=True) telescopes = List(Int, None, allow_none=True, help='Telescopes to include from the event file. ' 'Default = All telescopes').tag(config=True) max_events = Int(default_value=1000000000, help="Max number of events to include in analysis").tag(config=True) amp_cut = Dict().tag(config=True) dist_cut = Dict().tag(config=True) tail_cut = Dict().tag(config=True) pix_cut = Dict().tag(config=True) minimiser = Unicode(default_value="minuit", help='minimiser used for ImPACTReconstruction').tag(config=True) aliases = Dict(dict(infile='ImPACTReconstruction.infile', outfile='ImPACTReconstruction.outfile', telescopes='ImPACTReconstruction.telescopes', amp_cut='ImPACTReconstruction.amp_cut', dist_cut='ImPACTReconstruction.dist_cut', tail_cut='ImPACTReconstruction.tail_cut', pix_cut='ImPACTReconstruction.pix_cut', minimiser='ImPACTReconstruction.minimiser', max_events='ImPACTReconstruction.max_events')) def setup(self): self.geoms = dict() if len(self.amp_cut) == 0: self.amp_cut = {"LSTCam": 92.7, "NectarCam": 90.6, "FlashCam": 90.6, "CHEC": 29.3} if len(self.dist_cut) == 0: self.dist_cut = {"LSTCam": 1.74 * u.deg, "NectarCam": 3. * u.deg, "FlashCam": 3. * u.deg, "CHEC": 3.55 * u.deg} if len(self.tail_cut) == 0: self.tail_cut = {"LSTCam": (8, 16), "NectarCam": (7, 14), "FlashCam": (7, 14), "CHEC": (3, 6)} if len(self.pix_cut) == 0: self.pix_cut = {"LSTCam": 5, "NectarCam": 4, "FlashCam": 4, "CHEC": 4} # Calibrators set to default for now self.r1 = HessioR1Calibrator(None, None) self.dl0 = CameraDL0Reducer(None, None) self.calibrator = CameraDL1Calibrator(None, None, extractor=FullIntegrator(None, None)) # If we don't set this just use everything if len(self.telescopes) < 2: self.telescopes = None self.source = hessio_event_source(self.infile, allowed_tels=self.telescopes, max_events=self.max_events) self.fit = HillasIntersection() self.energy_reco = EnergyRegressor.load("./Aux/{cam_id}.pkl", ["CHEC", "LSTCam", "NectarCam"]) self.ImPACT=ImPACTReconstructor() self.viewer = EventViewer(draw_hillas_planes=True) self.output = Table(names=['EVENT_ID', 'RECO_ALT', 'RECO_AZ', 'RECO_EN', 'RECO_ALT_HILLAS', 'RECO_AZ_HILLAS','RECO_EN_HILLAS', 'GOF', 'SIM_ALT', 'SIM_AZ', 'SIM_EN', 'NTELS', 'DIST_CORE'], dtype=[np.int64, np.float64, np.float64, np.float64, np.float64, np.float64, np.float64, np.float64, np.float64, np.float64, np.float64, np.int16, np.float64]) def start(self): for event in self.source: self.calibrate_event(event) self.reconstruct_event(event) def finish(self): self.output.write(self.outfile) return True def calibrate_event(self, event): """ Run standard calibrators to get from r0 to dl1 Parameters ---------- event: ctapipe event container Returns ------- None """ self.r1.calibrate(event) self.dl0.reduce(event) self.calibrator.calibrate(event) # calibrate the events def preselect(self, hillas, npix, tel_id): """ Perform pre-selection of telescopes (before reconstruction) based on Hillas Parameters Parameters ---------- hillas: ctapipe Hillas parameter object tel_id: int Telescope ID number Returns ------- bool: Indicate whether telescope passes cuts """ if hillas is None: return False # Calculate distance of image centroid from camera centre dist = np.sqrt(hillas.cen_x * hillas.cen_x + hillas.cen_y * hillas.cen_y) # Cut based on Hillas amplitude and nominal distance if hillas.size > self.amp_cut[self.geoms[tel_id].cam_id] and dist < \ self.dist_cut[self.geoms[tel_id].cam_id] and \ hillas.width>0*u.deg and \ npix>self.pix_cut[self.geoms[tel_id].cam_id]: return True return False def reconstruct_event(self, event): """ Perform full event reconstruction, including Hillas and ImPACT analysis. Parameters ---------- event: ctapipe event container Returns ------- None """ # store MC pointing direction for the array array_pointing = HorizonFrame(alt = event.mcheader.run_array_direction[1]*u.rad, az = event.mcheader.run_array_direction[0]*u.rad) tilted_system = TiltedGroundFrame(pointing_direction=array_pointing) image = {} pixel_x = {} pixel_y = {} pixel_area = {} tel_type = {} tel_x = {} tel_y = {} hillas = {} hillas_nom = {} image_pred = {} mask_dict = {} Gate_dict = {} Nectar_dict = {} LST_dict ={} dict_list=[] for tel_id in event.dl0.tels_with_data: # Get calibrated image (low gain channel only) pmt_signal = event.dl1.tel[tel_id].image[0] # Create nominal system for the telescope (this should later used #telescope pointing) nom_system = NominalFrame(array_direction=array_pointing, pointing_direction=array_pointing) # Create camera system of all pixels pix_x, pix_y = event.inst.pixel_pos[tel_id] fl = event.inst.optical_foclen[tel_id] if tel_id not in self.geoms: self.geoms[tel_id] = CameraGeometry.guess(pix_x, pix_y, event.inst.optical_foclen[ tel_id], apply_derotation=False) # Transform the pixels positions into nominal coordinates camera_coord = CameraFrame(x=pix_x, y=pix_y, z=np.zeros(pix_x.shape) * u.m, focal_length=fl, rotation= -1* self.geoms[tel_id].cam_rotation) nom_coord = camera_coord.transform_to(nom_system) tx, ty, tz = event.inst.tel_pos[tel_id] # ImPACT reconstruction is performed in the tilted system, # so we need to transform tel positions grd_tel = GroundFrame(x=tx, y=ty, z=tz) tilt_tel = grd_tel.transform_to(tilted_system) # Clean image using split level cleaning mask = tailcuts_clean(self.geoms[tel_id], pmt_signal, picture_thresh=self.tail_cut[self.geoms[ tel_id].cam_id][1], boundary_thresh=self.tail_cut[self.geoms[ tel_id].cam_id][0]) # Perform Hillas parameterisation moments = None try: moments_cam = hillas_parameters(event.inst.pixel_pos[tel_id][0], event.inst.pixel_pos[tel_id][1], pmt_signal*mask) moments = hillas_parameters(nom_coord.x, nom_coord.y,pmt_signal*mask) except HillasParameterizationError as e: print(e) continue # Make cut based on Hillas parameters if self.preselect(moments, np.sum(mask), tel_id): # Dialte around edges of image for i in range(3): mask = dilate(self.geoms[tel_id], mask) # Save everything in dicts for reconstruction later pixel_area[tel_id] = self.geoms[tel_id].pix_area/(fl*fl) pixel_area[tel_id] *= u.rad*u.rad pixel_x[tel_id] = nom_coord.x[mask] pixel_y[tel_id] = nom_coord.y[mask] tel_x[tel_id] = tilt_tel.x tel_y[tel_id] = tilt_tel.y tel_type[tel_id] = self.geoms[tel_id].cam_id image[tel_id] = pmt_signal[mask] image_pred[tel_id] = np.zeros(pmt_signal.shape) hillas[tel_id] = moments_cam hillas_nom[tel_id] = moments mask_dict[tel_id] = mask cam_id = self.geoms[tel_id].cam_id print (cam_id) mom=[moments.size, tilt_tel, moments.width/u.rad, moments.length/u.rad] if (cam_id == 'LSTCam'): try: LST_dict[cam_id].append(mom) except: LST_dict.update({'LSTCam':[mom]}) elif (cam_id =='NectarCam'): try: Nectar_dict['NectarCam'].append(mom) except: Nectar_dict.update({'NectarCam':[mom]}) elif (cam_id =='CHEC'): try: Gate_dict[cam_id].append(mom) except: Gate_dict.update({'CHEC':[mom]}) else: print (cam_id +': Type not known') ################################################# # Cut on number of telescopes remaining if len(image)>1: fit_result = self.fit.predict(hillas_nom, tel_x, tel_y, array_pointing) core_pos_grd = GroundFrame(x=fit_result.core_x,y=fit_result.core_y, z=0*u.m) core_pos_tilt = core_pos_grd.transform_to(tilted_system) coredist=np.sqrt(core_pos_grd.x**2+core_pos_grd.y**2) dict_list=np.array([]) if len(LST_dict) != 0: for i in range (0,len(LST_dict['LSTCam'])): LST_dict['LSTCam'][i][1]= LST_dict['LSTCam'][i][1].separation_3d(core_pos_tilt).to(u.m)/u.m dict_list=np.append(dict_list,LST_dict) if len(Nectar_dict) != 0: for i in range(0,len(Nectar_dict['NectarCam'])): Nectar_dict['NectarCam'][i][1]= Nectar_dict['NectarCam'][i][1].separation_3d(core_pos_tilt).to(u.m) /u.m dict_list=np.append(dict_list,Nectar_dict) if len(Gate_dict) !=0: for i in range(0, len(Gate_dict['CHEC'])): Gate_dict['CHEC'][i][1]= Gate_dict['CHEC'][i][1].separation_3d(core_pos_tilt).to(u.m) /u.m dict_list=np.append(dict_list,Gate_dict) energy_result = self.energy_reco.predict_by_event(dict_list) print('Fit results and Energy results') print(energy_result) print ('__________________________') # Perform ImPACT reconstruction self.ImPACT.set_event_properties(image, pixel_x, pixel_y, pixel_area, tel_type, tel_x, tel_y, array_pointing, hillas_nom) energy_seed=ReconstructedEnergyContainer() energy_seed.energy=np.mean(np.power(10,energy_result['mean'].value)) * u.TeV energy_seed.energy_uncert=np.mean(energy_result['std']) energy_seed.is_valid = True energy_seed.tel_ids= event.dl0.tels_with_data ImPACT_shower, ImPACT_energy = self.ImPACT.predict(fit_result, energy_seed) print(ImPACT_energy) # insert the row into the table self.output.add_row((event.dl0.event_id, ImPACT_shower.alt, ImPACT_shower.az, ImPACT_energy.energy, fit_result.alt, fit_result.az, np.mean(np.power(10,energy_result['mean'].value)), ImPACT_shower.goodness_of_fit, event.mc.alt, event.mc.az, event.mc.energy, len(image),coredist))
class TestImPACT(): @classmethod def setup_class(self): self.impact_reco = ImPACTReconstructor(root_dir=".", fit_xmax=True) @pytest.mark.skip('need a dataset for this to work') def test_brightest_mean_average(self): """ Test that averaging of the brightest pixel position give a sensible outcome """ image = np.array([1,1,1,1]) pixel_x = np.array([0.,1.,0.,-1.])*u.deg pixel_y = np.array([-1.,0.,1.,0.])*u.deg pixel_area = np.array([0,0,0,0])*u.deg*u.deg self.impact_reco.set_event_properties({1:image}, {1:pixel_x}, {1:pixel_y}, {1:pixel_area}, {1:"CHEC"}, {1:0*u.m}, {1:0*u.m}, {1:0*u.m}) self.impact_reco.get_brightest_mean(num_pix=pixel_x.shape[0]) assert_allclose(self.impact_reco.peak_x[0], 0, rtol=0, atol=0.001) assert_allclose(self.impact_reco.peak_y[0], 0, rtol=0, atol=0.001) @pytest.mark.skip('need a dataset for this to work') def test_brightest_mean_sort(self): """ Test that pixels are sorted into the correct order """ image = np.array([1,1,1,0]) pixel_x = np.array([1,1,1,0])*u.rad pixel_y = np.array([1,1,1,0.])*u.rad pixel_area = np.array([0,0,0,0])*u.deg*u.deg self.impact_reco.set_event_properties({1:image}, {1:pixel_x}, {1:pixel_y}, {1:pixel_area}, {1:"CHEC"}, {1:0*u.m}, {1:0*u.m}, {1:0*u.m}) self.impact_reco.get_brightest_mean(num_pix=3) assert_allclose(self.impact_reco.peak_x[0], 1, rtol=0, atol=0.001) assert_allclose(self.impact_reco.peak_y[0], 1, rtol=0, atol=0.001) def test_rotation(self): """Test pixel rotation function""" x = np.array([1]) y = np.array([0]) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 0, 0, np.deg2rad(90)) assert_allclose(xt, 0, rtol=0, atol=0.001) assert_allclose(yt, 1, rtol=0, atol=0.001) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 0, 0, np.deg2rad(180)) assert_allclose(xt, -1, rtol=0, atol=0.001) assert_allclose(yt, 0, rtol=0, atol=0.001) def test_translation(self): """Test pixel translation function""" x = np.array([0]) y = np.array([0]) xt, yt = ImPACTReconstructor.rotate_translate(x, y, 1, 1, 0) assert_allclose(xt, -1, rtol=0, atol=0.001) assert_allclose(yt, -1, rtol=0, atol=0.001) @pytest.mark.skip('need a dataset for this to work') def test_xmax_calculation(self): """Test calculation of hmax and interpolation of Xmax tables""" image = np.array([1,1,1]) pixel_x = np.array([1,1,1])*u.deg pixel_y = np.array([1,1,1])*u.deg pixel_area = np.array([0,0,0])*u.deg*u.deg self.impact_reco.set_event_properties({1:image}, {1:pixel_x}, {1:pixel_y}, {1:pixel_area}, {1:"CHEC"}, {1:0*u.m}, {1:0*u.m}, array_direction=[0*u.deg,0*u.deg]) max = self.impact_reco.get_shower_max(0, 0, 0, 100, 0) assert_allclose(max, 486.85820802*u.g/(u.cm*u.cm), rtol=0.01) @pytest.mark.skip('need a dataset for this to work') def test_image_prediction(self): pixel_x = np.array([0])*u.deg pixel_y = np.array([0])*u.deg image = np.array([1]) pixel_area = np.array([1])*u.deg*u.deg self.impact_reco.set_event_properties({1:image}, {1:pixel_x}, {1:pixel_y}, {1:pixel_area}, {1:"CHEC"}, {1:0*u.m}, {1:0*u.m}, array_direction=[0*u.deg,0*u.deg]) """First check image prediction by directly accessing the function""" pred = self.impact_reco.image_prediction("CHEC", zenith=0, azimuth=0, energy=1, impact=50, x_max=0, pix_x=pixel_x, pix_y=pixel_y) assert np.sum(pred) != 0 """Then check helper function gives the same answer""" shower = ReconstructedShowerContainer() shower.is_valid=True shower.alt = 0*u.deg shower.az = 0*u.deg shower.core_x = 0 *u.m shower.core_y = 100*u.m shower.h_max = 300 + 93 * np.log10(1) energy = ReconstructedEnergyContainer() energy.is_valid = True energy.energy = 1*u.TeV pred2 = self.impact_reco.get_prediction(1, shower_reco=shower, energy_reco=energy) print(pred, pred2) assert pred.all() == pred2.all() @pytest.mark.skip('need a dataset for this to work') def test_likelihood(self): pixel_x = np.array([0])*u.deg pixel_y = np.array([0])*u.deg image = np.array([1]) pixel_area = np.array([1])*u.deg*u.deg self.impact_reco.set_event_properties({1:image}, {1:pixel_x}, {1:pixel_y}, {1:pixel_area}, {1:"CHEC"}, {1:0*u.m}, {1:0*u.m}, array_direction=[0*u.deg,0*u.deg]) like = self.impact_reco.get_likelihood(0, 0, 0, 100, 1, 0) assert like is not np.nan and like > 0