コード例 #1
0
def test_level_populations():
    clf = EventClassifier(cam_id_list=None)
    g = np.array([[26, 70, 53], [97, 20, 56], [35, 38, 81], [48, 60, 40],
                  [73, 68, 63], [96, 86, 63], [73, 67, 6], [48, 66, 60],
                  [47, 82, 87], [60, 52, 74]])

    h = np.array([[18, 31, 47], [15, 81, 72], [75, 93, 45], [57, 50, 3],
                  [12, 80, 3], [82, 49, 31], [1, 21, 0], [79, 12, 29],
                  [19, 52, 42], [86, 49, 15]])

    dum_l = [{
        'maxf': 100,
        'minf': 0,
        'col': 0,
        'nbins': 4
    }, {
        'maxf': 100,
        'minf': 0,
        'col': 1,
        'nbins': 2
    }]

    group_g = clf._hyperBinning(g, dum_l)
    group_h = clf._hyperBinning(h, dum_l)

    cleaned_g, cleaned_h = clf.level_populations(group_g, group_h, g, h)

    assert cleaned_g.shape == cleaned_h.shape
コード例 #2
0
def test_pipeline_classifier():
    cam_id_list = ["FlashCam", "ASTRICam"]
    feature_list = {"FlashCam": [[1, 10], [2, 20], [3, 30], [0.9, 9],
                                 [10, 1], [20, 2], [30, 3], [9, 0.9]],
                    "ASTRICam": [[10, 1], [20, 2], [30, 3], [9, 0.9],
                                 [1, 10], [2, 20], [3, 30], [0.9, 9]]}
    target_list = {"FlashCam": ["a", "a", "a", "a", "b", "b", "b", "b"],
                   "ASTRICam": ["a", "a", "a", "a", "b", "b", "b", "b"]}

    estimators = [('scaler', StandardScaler()),
                  ('clf', MLPClassifier(max_iter=400))]

    clf = EventClassifier(classifier=Pipeline, steps=estimators,
                          cam_id_list=cam_id_list)
    clf.fit(feature_list, target_list)

    prediction = clf.predict_by_event([{"ASTRICam": [[10, 1]]},
                                       {"ASTRICam": [[2, 20]]},
                                       {"ASTRICam": [[3, 30]]}])
    assert (prediction == ["a", "b", "b"]).all()

    prediction = clf.predict_by_event([{"FlashCam": [[10, 1]]},
                                       {"FlashCam": [[2, 20]]},
                                       {"FlashCam": [[3, 30]]}])
    assert (prediction == ["b", "a", "a"]).all()
コード例 #3
0
def test_level_populations():
    clf = EventClassifier(cam_id_list=None)
    g = np.array([[26, 70, 53],
                  [97, 20, 56],
                  [35, 38, 81],
                  [48, 60, 40],
                  [73, 68, 63],
                  [96, 86, 63],
                  [73, 67, 6],
                  [48, 66, 60],
                  [47, 82, 87],
                  [60, 52, 74]])

    h = np.array([[18, 31, 47],
                  [15, 81, 72],
                  [75, 93, 45],
                  [57, 50, 3],
                  [12, 80, 3],
                  [82, 49, 31],
                  [1, 21, 0],
                  [79, 12, 29],
                  [19, 52, 42],
                  [86, 49, 15]])

    dum_l = [{'maxf': 100, 'minf': 0, 'col': 0, 'nbins': 4},
             {'maxf': 100, 'minf': 0, 'col': 1, 'nbins': 2}]

    group_g = clf._hyperBinning(g, dum_l)
    group_h = clf._hyperBinning(h, dum_l)

    cleaned_g, cleaned_h = clf.level_populations(group_g, group_h, g, h)

    assert cleaned_g.shape == cleaned_h.shape
コード例 #4
0
def test_Qfactor():
    """
    TODO: how to test validity of Q-factor values?
    """
    cam_id = ["ASTRICam"]
    features = {"ASTRICam": [[10, 1], [20, 2], [30, 3], [9, 0.9],
                             [1, 10], [2, 20], [3, 30], [0.9, 9]]}
    target = {"ASTRICam": [1, 1, 1, 1, 0, 0, 0, 0]}
    clf = EventClassifier(cam_id_list=cam_id, n_estimators=10)
    clf.fit(features, target)

    # Now predict
    ev_feat = [{"ASTRICam": [[10, 1]]}, {"ASTRICam": [[2, 20]]}, {"ASTRICam": [[3, 30]]},
               {"ASTRICam": [[100, 10]]}, {"ASTRICam": [[4, 40]]}, {"ASTRICam": [[0.5, 5]]}]
    true_labels = np.array([1, 0, 0, 1, 0, 0], dtype=np.int8)
    prediction = clf.predict_proba_by_event(X=ev_feat)

    # prediction is a two columns array
    # first  column is the probability to belong to class "0" --> hadron
    # second column is the probability to belong to class "1" --> gamma
    # we are interested in the probability to be gamma
    proba_to_be_gamma = prediction[:, 1]

    Q, gammaness = clf.compute_Qfactor(
        proba=proba_to_be_gamma, labels=true_labels, nbins=2)

    assert Q.size != 0
    assert Q.size == gammaness.size
コード例 #5
0
def test_prepare_model():
    cam_id_list = ["FlashCam", "ASTRICam"]
    feature_list = {
        "FlashCam": [
            [1, 10],
            [2, 20],
            [3, 30],
            [0.9, 9],
            [10, 1],
            [20, 2],
            [30, 3],
            [9, 0.9],
        ],
        "ASTRICam": [
            [10, 1],
            [20, 2],
            [30, 3],
            [9, 0.9],
            [1, 10],
            [2, 20],
            [3, 30],
            [0.9, 9],
        ],
    }
    target_list = {
        "FlashCam": ["a", "a", "a", "a", "b", "b", "b", "b"],
        "ASTRICam": ["a", "a", "a", "a", "b", "b", "b", "b"],
    }

    clf = EventClassifier(cam_id_list=cam_id_list, n_estimators=10)
    clf.fit(feature_list, target_list)
    return clf, cam_id_list
コード例 #6
0
def test_prepare_model():
    cam_id_list = ["FlashCam", "ASTRICam"]
    feature_list = {"FlashCam": [[1, 10], [2, 20], [3, 30], [0.9, 9],
                                 [10, 1], [20, 2], [30, 3], [9, 0.9]],
                    "ASTRICam": [[10, 1], [20, 2], [30, 3], [9, 0.9],
                                 [1, 10], [2, 20], [3, 30], [0.9, 9]]}
    target_list = {"FlashCam": ["a", "a", "a", "a", "b", "b", "b", "b"],
                   "ASTRICam": ["a", "a", "a", "a", "b", "b", "b", "b"]}

    clf = EventClassifier(cam_id_list=cam_id_list, n_estimators=10)
    clf.fit(feature_list, target_list)
    return clf, cam_id_list
コード例 #7
0
def test_prepare_model_MLP():
    cam_id_list = ["FlashCam", "ASTRICam"]
    feature_list = {"FlashCam": [[1, 10], [2, 20], [3, 30], [0.9, 9],
                                 [10, 1], [20, 2], [30, 3], [9, 0.9]],
                    "ASTRICam": [[10, 1], [20, 2], [30, 3], [9, 0.9],
                                 [1, 10], [2, 20], [3, 30], [0.9, 9]]}
    target_list = {"FlashCam": ["a", "a", "a", "a", "b", "b", "b", "b"],
                   "ASTRICam": ["a", "a", "a", "a", "b", "b", "b", "b"]}

    clf = EventClassifier(classifier=MLPClassifier, cam_id_list=cam_id_list, max_iter=400)
    scaled_features, scaler = EventClassifier.scale_features(cam_id_list, feature_list)

    # clf.fit(feature_list, target_list)
    clf.fit(scaled_features, target_list)
    return clf, cam_id_list, scaler
コード例 #8
0
def test_fit_save_load_MLP():
    clf, cam_id_list, scaler = test_prepare_model_MLP()
    with TemporaryDirectory() as d:
        temp_path = "/".join([d, "reg_{cam_id}.pkl"])
        clf.save(temp_path)
        clf = EventClassifier.load(temp_path, cam_id_list)
        return clf, cam_id_list, scaler
コード例 #9
0
def test_fit_save_load():
    clf, cam_id_list = test_prepare_model()
    with TemporaryDirectory() as d:
        temp_path = "/".join([d, "reg_{cam_id}.pkl"])
        clf.save(temp_path)
        clf = EventClassifier.load(temp_path, cam_id_list)
        return clf, cam_id_list
コード例 #10
0
def test_hyperBinning():
    clf = EventClassifier(cam_id_list=None)
    x = np.array([[26, 70, 53],
                  [97, 20, 56],
                  [35, 38, 81],
                  [48, 60, 40],
                  [73, 68, 63],
                  [96, 86, 63],
                  [73, 67, 6],
                  [48, 66, 60],
                  [47, 82, 87],
                  [60, 52, 74]])

    dum_l = [{'maxf': max(x[:, 0]), 'minf': min(x[:, 0]), 'col': 0, 'nbins': 4},
             {'maxf': max(x[:, 1]), 'minf': min(x[:, 1]), 'col': 1, 'nbins': 2}]

    dum_g = clf._hyperBinning(x, dum_l)

    assert np.all(dum_g.size() == (1, 1, 3, 2, 1))
コード例 #11
0
def test_hyperBinning():
    clf = EventClassifier(cam_id_list=None)
    x = np.array([[26, 70, 53], [97, 20, 56], [35, 38, 81], [48, 60, 40],
                  [73, 68, 63], [96, 86, 63], [73, 67, 6], [48, 66, 60],
                  [47, 82, 87], [60, 52, 74]])

    dum_l = [{
        'maxf': max(x[:, 0]),
        'minf': min(x[:, 0]),
        'col': 0,
        'nbins': 4
    }, {
        'maxf': max(x[:, 1]),
        'minf': min(x[:, 1]),
        'col': 1,
        'nbins': 2
    }]

    dum_g = clf._hyperBinning(x, dum_l)

    assert np.all(dum_g.size() == (1, 1, 3, 2, 1))
コード例 #12
0
def test_prepare_model_MLP():
    cam_id_list = ["FlashCam", "ASTRICam"]
    feature_list = {
        "FlashCam": [[1, 10], [2, 20], [3, 30], [0.9, 9], [10, 1], [20, 2],
                     [30, 3], [9, 0.9]],
        "ASTRICam": [[10, 1], [20, 2], [30, 3], [9, 0.9], [1, 10], [2, 20],
                     [3, 30], [0.9, 9]]
    }
    target_list = {
        "FlashCam": ["a", "a", "a", "a", "b", "b", "b", "b"],
        "ASTRICam": ["a", "a", "a", "a", "b", "b", "b", "b"]
    }

    clf = EventClassifier(classifier=MLPClassifier,
                          cam_id_list=cam_id_list,
                          max_iter=400)
    scaled_features, scaler = EventClassifier.scale_features(
        cam_id_list, feature_list)

    # clf.fit(feature_list, target_list)
    clf.fit(scaled_features, target_list)
    return clf, cam_id_list, scaler
コード例 #13
0
def test_Qfactor():
    """
    TODO: how to test validity of Q-factor values?
    """
    cam_id = ["ASTRICam"]
    features = {
        "ASTRICam": [
            [10, 1],
            [20, 2],
            [30, 3],
            [9, 0.9],
            [1, 10],
            [2, 20],
            [3, 30],
            [0.9, 9],
        ]
    }
    target = {"ASTRICam": [1, 1, 1, 1, 0, 0, 0, 0]}
    clf = EventClassifier(cam_id_list=cam_id, n_estimators=10)
    clf.fit(features, target)

    # Now predict
    ev_feat = [
        {
            "ASTRICam": [[10, 1]]
        },
        {
            "ASTRICam": [[2, 20]]
        },
        {
            "ASTRICam": [[3, 30]]
        },
        {
            "ASTRICam": [[100, 10]]
        },
        {
            "ASTRICam": [[4, 40]]
        },
        {
            "ASTRICam": [[0.5, 5]]
        },
    ]
    true_labels = np.array([1, 0, 0, 1, 0, 0], dtype=np.int8)
    prediction = clf.predict_proba_by_event(X=ev_feat)

    # prediction is a two columns array
    # first  column is the probability to belong to class "0" --> hadron
    # second column is the probability to belong to class "1" --> gamma
    # we are interested in the probability to be gamma
    proba_to_be_gamma = prediction[:, 1]

    Q, gammaness = clf.compute_Qfactor(proba=proba_to_be_gamma,
                                       labels=true_labels,
                                       nbins=2)

    assert Q.size != 0
    assert Q.size == gammaness.size
コード例 #14
0
def test_pipeline_classifier():
    cam_id_list = ["FlashCam", "ASTRICam"]
    feature_list = {
        "FlashCam": [
            [1, 10],
            [2, 20],
            [3, 30],
            [0.9, 9],
            [10, 1],
            [20, 2],
            [30, 3],
            [9, 0.9],
        ],
        "ASTRICam": [
            [10, 1],
            [20, 2],
            [30, 3],
            [9, 0.9],
            [1, 10],
            [2, 20],
            [3, 30],
            [0.9, 9],
        ],
    }
    target_list = {
        "FlashCam": ["a", "a", "a", "a", "b", "b", "b", "b"],
        "ASTRICam": ["a", "a", "a", "a", "b", "b", "b", "b"],
    }

    estimators = [("scaler", StandardScaler()),
                  ("clf", MLPClassifier(max_iter=400))]

    clf = EventClassifier(classifier=Pipeline,
                          steps=estimators,
                          cam_id_list=cam_id_list)
    clf.fit(feature_list, target_list)

    prediction = clf.predict_by_event([{
        "ASTRICam": [[10, 1]]
    }, {
        "ASTRICam": [[2, 20]]
    }, {
        "ASTRICam": [[3, 30]]
    }])
    assert (prediction == ["a", "b", "b"]).all()

    prediction = clf.predict_by_event([{
        "FlashCam": [[10, 1]]
    }, {
        "FlashCam": [[2, 20]]
    }, {
        "FlashCam": [[3, 30]]
    }])
    assert (prediction == ["b", "a", "a"]).all()
コード例 #15
0
def main():

    # Argument parser
    parser = make_argparser()
    parser.add_argument("--regressor_dir",
                        default="./",
                        help="regressors directory")
    parser.add_argument("--classifier_dir",
                        default="./",
                        help="regressors directory")
    parser.add_argument(
        "--force_tailcut_for_extended_cleaning",
        type=str2bool,
        default=False,
        help="For tailcut cleaning for energy/score estimation",
    )
    parser.add_argument(
        "--save_images",
        action="store_true",
        help="Save images in images.h5 (one file testing)",
    )
    args = parser.parse_args()

    # Read configuration file
    cfg = load_config(args.config_file)

    # Read site layout
    site = cfg["General"]["site"]
    array = cfg["General"]["array"]
    cameras = cfg["General"]["cam_id_list"]

    # Add force_tailcut_for_extended_cleaning in configuration
    cfg["General"][
        "force_tailcut_for_extended_cleaning"] = args.force_tailcut_for_extended_cleaning
    cfg["General"]["force_mode"] = "tail"
    force_mode = args.mode
    if cfg["General"]["force_tailcut_for_extended_cleaning"] is True:
        force_mode = "tail"
    print("force_mode={}".format(force_mode))
    print("mode={}".format(args.mode))

    if args.infile_list:
        filenamelist = []
        for f in args.infile_list:
            filenamelist += glob("{}/{}".format(args.indir, f))
        filenamelist.sort()

    if not filenamelist:
        print("no files found; check indir: {}".format(args.indir))
        exit(-1)

    # keeping track of events and where they were rejected
    evt_cutflow = CutFlow("EventCutFlow")
    img_cutflow = CutFlow("ImageCutFlow")

    # Event preparer
    preper = EventPreparer(config=cfg,
                           mode=args.mode,
                           event_cutflow=evt_cutflow,
                           image_cutflow=img_cutflow)

    # Regressor and classifier methods
    regressor_method = cfg["EnergyRegressor"]["method_name"]
    classifier_method = cfg["GammaHadronClassifier"]["method_name"]
    use_proba_for_classifier = cfg["GammaHadronClassifier"]["use_proba"]

    if regressor_method in ["None", "none", None]:
        use_regressor = False
    else:
        use_regressor = True

    if classifier_method in ["None", "none", None]:
        use_classifier = False
    else:
        use_classifier = True

    # Classifiers
    if use_classifier:
        classifier_files = (args.classifier_dir +
                            "/classifier_{mode}_{cam_id}_{classifier}.pkl.gz")
        clf_file = classifier_files.format(
            **{
                "mode": force_mode,
                "wave_args": "mixed",
                "classifier": classifier_method,
                "cam_id": "{cam_id}",
            })
        classifier = EventClassifier.load(clf_file, cam_id_list=cameras)

    # Regressors
    if use_regressor:
        regressor_files = (args.regressor_dir +
                           "/regressor_{mode}_{cam_id}_{regressor}.pkl.gz")
        reg_file = regressor_files.format(
            **{
                "mode": force_mode,
                "wave_args": "mixed",
                "regressor": regressor_method,
                "cam_id": "{cam_id}",
            })
        regressor = EnergyRegressor.load(reg_file, cam_id_list=cameras)

    # catch ctr-c signal to exit current loop and still display results
    signal_handler = SignalHandler()
    signal.signal(signal.SIGINT, signal_handler)

    # Declaration of the column descriptor for the (possible) images file
    class StoredImages(tb.IsDescription):
        event_id = tb.Int32Col(dflt=1, pos=0)
        tel_id = tb.Int16Col(dflt=1, pos=1)
        dl1_phe_image = tb.Float32Col(shape=(1855), pos=2)
        mc_phe_image = tb.Float32Col(shape=(1855), pos=3)

    # this class defines the reconstruction parameters to keep track of
    class RecoEvent(tb.IsDescription):
        obs_id = tb.Int16Col(dflt=-1, pos=0)
        event_id = tb.Int32Col(dflt=-1, pos=1)
        NTels_trig = tb.Int16Col(dflt=0, pos=2)
        NTels_reco = tb.Int16Col(dflt=0, pos=3)
        NTels_reco_lst = tb.Int16Col(dflt=0, pos=4)
        NTels_reco_mst = tb.Int16Col(dflt=0, pos=5)
        NTels_reco_sst = tb.Int16Col(dflt=0, pos=6)
        mc_energy = tb.Float32Col(dflt=np.nan, pos=7)
        reco_energy = tb.Float32Col(dflt=np.nan, pos=8)
        reco_alt = tb.Float32Col(dflt=np.nan, pos=9)
        reco_az = tb.Float32Col(dflt=np.nan, pos=10)
        offset = tb.Float32Col(dflt=np.nan, pos=11)
        xi = tb.Float32Col(dflt=np.nan, pos=12)
        ErrEstPos = tb.Float32Col(dflt=np.nan, pos=13)
        ErrEstDir = tb.Float32Col(dflt=np.nan, pos=14)
        gammaness = tb.Float32Col(dflt=np.nan, pos=15)
        success = tb.BoolCol(dflt=False, pos=16)
        score = tb.Float32Col(dflt=np.nan, pos=17)
        h_max = tb.Float32Col(dflt=np.nan, pos=18)
        reco_core_x = tb.Float32Col(dflt=np.nan, pos=19)
        reco_core_y = tb.Float32Col(dflt=np.nan, pos=20)
        mc_core_x = tb.Float32Col(dflt=np.nan, pos=21)
        mc_core_y = tb.Float32Col(dflt=np.nan, pos=22)

    reco_outfile = tb.open_file(
        mode="w",
        # if no outfile name is given (i.e. don't to write the event list to disk),
        # need specify two "driver" arguments
        **({
            "filename": args.outfile
        } if args.outfile else {
            "filename": "no_outfile.h5",
            "driver": "H5FD_CORE",
            "driver_core_backing_store": False,
        }))

    reco_table = reco_outfile.create_table("/", "reco_events", RecoEvent)
    reco_event = reco_table.row

    # Create the images file only if the user want to store the images
    if args.save_images is True:
        images_outfile = tb.open_file("images.h5", mode="w")
        images_table = {}
        images_phe = {}

    # Telescopes in analysis
    allowed_tels = set(prod3b_tel_ids(array, site=site))
    for i, filename in enumerate(filenamelist):

        source = event_source(input_url=filename,
                              allowed_tels=allowed_tels,
                              max_events=args.max_events)
        # loop that cleans and parametrises the images and performs the reconstruction
        for (
                event,
                dl1_phe_image,
                mc_phe_image,
                n_pixel_dict,
                hillas_dict,
                hillas_dict_reco,
                n_tels,
                tot_signal,
                max_signals,
                n_cluster_dict,
                reco_result,
                impact_dict,
        ) in preper.prepare_event(source):

            # Angular quantities
            run_array_direction = event.mcheader.run_array_direction

            # Angular separation between true and reco direction
            xi = angular_separation(event.mc.az, event.mc.alt, reco_result.az,
                                    reco_result.alt)

            # Angular separation bewteen the center of the camera and the reco direction.
            offset = angular_separation(
                run_array_direction[0],  # az
                run_array_direction[1],  # alt
                reco_result.az,
                reco_result.alt,
            )

            # Height of shower maximum
            h_max = reco_result.h_max

            if hillas_dict is not None:

                # Estimate particle energy
                if use_regressor is True:
                    energy_tel = np.zeros(len(hillas_dict.keys()))
                    weight_tel = np.zeros(len(hillas_dict.keys()))

                    for idx, tel_id in enumerate(hillas_dict.keys()):
                        cam_id = event.inst.subarray.tel[tel_id].camera.cam_id
                        moments = hillas_dict[tel_id]
                        model = regressor.model_dict[cam_id]

                        # Features to be fed in the regressor
                        features_img = np.array([
                            np.log10(moments.intensity),
                            np.log10(impact_dict[tel_id].value),
                            moments.width.value,
                            moments.length.value,
                            h_max.value,
                        ])

                        energy_tel[idx] = model.predict([features_img])
                        weight_tel[idx] = moments.intensity

                    reco_energy = np.sum(
                        weight_tel * energy_tel) / sum(weight_tel)
                else:
                    reco_energy = np.nan

                # Estimate particle score/gammaness
                if use_classifier is True:
                    score_tel = np.zeros(len(hillas_dict.keys()))
                    gammaness_tel = np.zeros(len(hillas_dict.keys()))
                    weight_tel = np.zeros(len(hillas_dict.keys()))

                    for idx, tel_id in enumerate(hillas_dict.keys()):
                        cam_id = event.inst.subarray.tel[tel_id].camera.cam_id
                        moments = hillas_dict[tel_id]
                        model = classifier.model_dict[cam_id]
                        # Features to be fed in the classifier
                        features_img = np.array([
                            np.log10(reco_energy),
                            moments.width.value,
                            moments.length.value,
                            moments.skewness,
                            moments.kurtosis,
                            h_max.value,
                        ])
                        # Output of classifier according to type of classifier
                        if use_proba_for_classifier is False:
                            score_tel[idx] = model.decision_function(
                                [features_img])
                        else:
                            gammaness_tel[idx] = model.predict_proba(
                                [features_img])[:, 1]
                        # Should test other weighting strategy (e.g. power of charge, impact, etc.)
                        # For now, weighting a la Mars
                        weight_tel[idx] = np.sqrt(moments.intensity)

                    # Weight the final decision/proba
                    if use_proba_for_classifier is True:
                        gammaness = np.sum(
                            weight_tel * gammaness_tel) / sum(weight_tel)
                    else:
                        score = np.sum(
                            weight_tel * score_tel) / sum(weight_tel)
                else:
                    score = np.nan
                    gammaness = np.nan

                # Regardless if energy or gammaness is estimated, if the user
                # wants to save the images of the run we do it here
                # (Probably not the most efficient way, but for one file is ok)
                if args.save_images is True:
                    for idx, tel_id in enumerate(hillas_dict.keys()):
                        cam_id = event.inst.subarray.tel[tel_id].camera.cam_id
                        if cam_id not in images_phe:
                            images_table[cam_id] = images_outfile.create_table(
                                "/", "_".join(["images", cam_id]),
                                StoredImages)
                            images_phe[cam_id] = images_table[cam_id].row

                shower = event.mc
                mc_core_x = shower.core_x
                mc_core_y = shower.core_y

                reco_core_x = reco_result.core_x
                reco_core_y = reco_result.core_y

                alt, az = reco_result.alt, reco_result.az

                # Fill table's attributes
                reco_event["NTels_trig"] = len(event.dl0.tels_with_data)
                reco_event["NTels_reco"] = len(hillas_dict)
                reco_event["NTels_reco_lst"] = n_tels["LST_LST_LSTCam"]
                reco_event["NTels_reco_mst"] = n_tels["MST_MST_NectarCam"]
                reco_event["NTels_reco_sst"] = n_tels["SST"]  # will change
                reco_event["reco_energy"] = reco_energy
                reco_event["reco_alt"] = alt.to("deg").value
                reco_event["reco_az"] = az.to("deg").value
                reco_event["offset"] = offset.to("deg").value
                reco_event["xi"] = xi.to("deg").value
                reco_event["h_max"] = h_max.to("m").value
                reco_event["reco_core_x"] = reco_core_x.to("m").value
                reco_event["reco_core_y"] = reco_core_y.to("m").value
                reco_event["mc_core_x"] = mc_core_x.to("m").value
                reco_event["mc_core_y"] = mc_core_y.to("m").value
                if use_proba_for_classifier is True:
                    reco_event["gammaness"] = gammaness
                else:
                    reco_event["score"] = score
                reco_event["success"] = True
                reco_event["ErrEstPos"] = np.nan
                reco_event["ErrEstDir"] = np.nan
            else:
                reco_event["success"] = False

            # save basic event infos
            reco_event["mc_energy"] = event.mc.energy.to("TeV").value
            reco_event["event_id"] = event.r1.event_id
            reco_event["obs_id"] = event.r1.obs_id

            if args.save_images is True:
                images_phe[cam_id]["event_id"] = event.r0.event_id
                images_phe[cam_id]["tel_id"] = tel_id
                images_phe[cam_id]["dl1_phe_image"] = dl1_phe_image
                images_phe[cam_id]["mc_phe_image"] = mc_phe_image

                images_phe[cam_id].append()

            # Fill table
            reco_table.flush()
            reco_event.append()

            if signal_handler.stop:
                break
        if signal_handler.stop:
            break

    # make sure everything gets written out nicely
    reco_table.flush()

    if args.save_images is True:
        for table in images_table.values():
            table.flush()

    # Add in meta-data's table?
    try:
        print()
        evt_cutflow()
        print()
        img_cutflow()

    except ZeroDivisionError:
        pass

    print("Job done!")
コード例 #16
0
ファイル: train_classifier.py プロジェクト: jdhp-sap/tino_cta
    cl = np.array(cl)
    telescope_weights[cam_id] = np.ones_like(cl, dtype=np.float)
    if args.unify:
        telescope_weights[cam_id][cl == 'g'] = \
            1 / np.count_nonzero(cl == 'g')
        telescope_weights[cam_id][cl == 'p'] = \
            1 / np.count_nonzero(cl == 'p')

    print("number of g:", np.count_nonzero(cl == 'g'))
    print("number of p:", np.count_nonzero(cl == 'p'))
    print()

# use default random forest classifier
clf_kwargs = {'n_estimators': 40, 'max_depth': None, 'min_samples_split': 2,
              'random_state': 0, 'cam_id_list': cam_id_list}
classifier = EventClassifier(**clf_kwargs)
classifier.fit(features, classes, telescope_weights)

if args.store:
    classifier.save(args.outpath.format(mode=args.mode,
                                        classifier=classifier,
                                        cam_id="{cam_id}"))

fig = classifier.show_importances(ClassifierFeatures._fields)
fig.set_size_inches(15, 10)
for ax in fig.axes:
    plt.sca(ax)
    plt.xticks(rotation=45)
    for label in ax.get_xmajorticklabels():
        label.set_horizontalalignment("right")
plt.subplots_adjust(top=0.9, bottom=0.135, left=0.034, right=0.98,