def test_ctcsegmentationparameters(): # test repr and init config = CtcSegmentationParameters(fs=16000) config = eval(str(config)) assert config.fs == 16000 config.subsampling_factor = 512 assert config.index_duration_in_seconds == 0.032
def ctc_align(args, device): """ESPnet-specific interface for CTC segmentation. Parses configuration, infers the CTC posterior probabilities, and then aligns start and end of utterances using CTC segmentation. Results are written to the output file given in the args. :param args: given configuration :param device: for inference; one of ['cuda', 'cpu'] :return: 0 on success """ model, train_args = load_trained_model(args.model) assert isinstance(model, ASRInterface) load_inputs_and_targets = LoadInputsAndTargets( mode="asr", load_output=True, sort_in_input_length=False, preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={"train": False}, ) logging.info(f"Decoding device={device}") # Warn for nets with high memory consumption on long audio files if hasattr(model, "enc"): encoder_module = model.enc.__class__.__module__ elif hasattr(model, "encoder"): encoder_module = model.encoder.__class__.__module__ else: encoder_module = "Unknown" logging.info(f"Encoder module: {encoder_module}") logging.info(f"CTC module: {model.ctc.__class__.__module__}") if "rnn" not in encoder_module: logging.warning("No BLSTM model detected; memory consumption may be high.") model.to(device=device).eval() # read audio and text json data with open(args.data_json, "rb") as f: js = json.load(f)["utts"] with open(args.utt_text, "r", encoding="utf-8") as f: lines = f.readlines() i = 0 text = {} segment_names = {} for name in js.keys(): text_per_audio = [] segment_names_per_audio = [] while i < len(lines) and lines[i].startswith(name): text_per_audio.append(lines[i][lines[i].find(" ") + 1 :]) segment_names_per_audio.append(lines[i][: lines[i].find(" ")]) i += 1 text[name] = text_per_audio segment_names[name] = segment_names_per_audio # apply configuration config = CtcSegmentationParameters() subsampling_factor = 1 frame_duration_ms = 10 if args.subsampling_factor is not None: subsampling_factor = args.subsampling_factor if args.frame_duration is not None: frame_duration_ms = args.frame_duration # Backwards compatibility to ctc_segmentation <= 1.5.3 if hasattr(config, "index_duration"): config.index_duration = frame_duration_ms * subsampling_factor / 1000 else: config.subsampling_factor = subsampling_factor config.frame_duration_ms = frame_duration_ms if args.min_window_size is not None: config.min_window_size = args.min_window_size if args.max_window_size is not None: config.max_window_size = args.max_window_size config.char_list = train_args.char_list if args.use_dict_blank is not None: logging.warning( "The option --use-dict-blank is deprecated. If needed," " use --set-blank instead." ) if args.set_blank is not None: config.blank = args.set_blank if args.replace_spaces_with_blanks is not None: if args.replace_spaces_with_blanks: config.replace_spaces_with_blanks = True else: config.replace_spaces_with_blanks = False if args.gratis_blank: config.blank_transition_cost_zero = True if config.blank_transition_cost_zero and args.replace_spaces_with_blanks: logging.error( "Blanks are inserted between words, and also the transition cost of blank" " is zero. This configuration may lead to misalignments!" ) if args.scoring_length is not None: config.score_min_mean_over_L = args.scoring_length logging.info(f"Frame timings: {frame_duration_ms}ms * {subsampling_factor}") # Iterate over audio files to decode and align for idx, name in enumerate(js.keys(), 1): logging.info("(%d/%d) Aligning " + name, idx, len(js.keys())) batch = [(name, js[name])] feat, label = load_inputs_and_targets(batch) feat = feat[0] with torch.no_grad(): # Encode input frames enc_output = model.encode(torch.as_tensor(feat).to(device)).unsqueeze(0) # Apply ctc layer to obtain log character probabilities lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy() # Prepare the text for aligning ground_truth_mat, utt_begin_indices = prepare_text(config, text[name]) # Align using CTC segmentation timings, char_probs, state_list = ctc_segmentation( config, lpz, ground_truth_mat ) logging.debug(f"state_list = {state_list}") # Obtain list of utterances with time intervals and confidence score segments = determine_utterance_segments( config, utt_begin_indices, char_probs, timings, text[name] ) # Write to "segments" file for i, boundary in enumerate(segments): utt_segment = ( f"{segment_names[name][i]} {name} {boundary[0]:.2f}" f" {boundary[1]:.2f} {boundary[2]:.9f}\n" ) args.output.write(utt_segment) return 0
def ctc_align(args, device): """ESPnet-specific interface for CTC segmentation. Parses configuration, infers the CTC posterior probabilities, and then aligns start and end of utterances using CTC segmentation. Results are written to the output file given in the args. :param args: given configuration :param device: for inference; one of ['cuda', 'cpu'] :return: 0 on success """ model, train_args = load_trained_model(args.model) assert isinstance(model, ASRInterface) load_inputs_and_targets = LoadInputsAndTargets( mode="asr", load_output=True, sort_in_input_length=False, preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={"train": False}, ) logging.info(f"Decoding device={device}") model.to(device=device).eval() # read audio and text json data with open(args.data_json, "rb") as f: js = json.load(f)["utts"] with open(args.utt_text, "r") as f: lines = f.readlines() i = 0 text = {} segment_names = {} for name in js.keys(): text_per_audio = [] segment_names_per_audio = [] while i < len(lines) and lines[i].startswith(name): text_per_audio.append(lines[i][lines[i].find(" ") + 1:]) segment_names_per_audio.append(lines[i][:lines[i].find(" ")]) i += 1 text[name] = text_per_audio segment_names[name] = segment_names_per_audio # apply configuration config = CtcSegmentationParameters() if args.subsampling_factor is not None: config.subsampling_factor = args.subsampling_factor if args.frame_duration is not None: config.frame_duration_ms = args.frame_duration if args.min_window_size is not None: config.min_window_size = args.min_window_size if args.max_window_size is not None: config.max_window_size = args.max_window_size char_list = train_args.char_list if args.use_dict_blank: config.blank = char_list[0] logging.debug( f"Frame timings: {config.frame_duration_ms}ms * {config.subsampling_factor}" ) # Iterate over audio files to decode and align for idx, name in enumerate(js.keys(), 1): logging.info("(%d/%d) Aligning " + name, idx, len(js.keys())) batch = [(name, js[name])] feat, label = load_inputs_and_targets(batch) feat = feat[0] with torch.no_grad(): # Encode input frames enc_output = model.encode( torch.as_tensor(feat).to(device)).unsqueeze(0) # Apply ctc layer to obtain log character probabilities lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy() # Prepare the text for aligning ground_truth_mat, utt_begin_indices = prepare_text( config, text[name], char_list) # Align using CTC segmentation timings, char_probs, state_list = ctc_segmentation( config, lpz, ground_truth_mat) # Obtain list of utterances with time intervals and confidence score segments = determine_utterance_segments(config, utt_begin_indices, char_probs, timings, text[name]) # Write to "segments" file for i, boundary in enumerate(segments): utt_segment = (f"{segment_names[name][i]} {name} {boundary[0]:.2f}" f" {boundary[1]:.2f} {boundary[2]:.9f}\n") args.output.write(utt_segment) return 0