コード例 #1
0
    def energy_1x1(self, state, env):
        r"""
        :param state: wavefunction
        :param env_c4v: CTM c4v symmetric environment
        :type state: IPEPS
        :type env: ENV_C4V
        :return: energy per site
        :rtype: float

        For 1-site invariant c4v iPEPS it's enough to construct a 1-site reduced
        density matrix :py:func:`ctm.one_site_c4v.rdm_c4v.rdm1x1`, effectively 
        representing a 2x2 plaquette, and 2-site reduced
        density matrix :py:func:`ctm.one_site_c4v.rdm_c4v.rdm2x1` which represents 
        interaction between two plaquettes of the underlying physical system:
        
        .. math:: 

            e = \langle h1 \rangle_{\rho_{1x1}} + \langle h2 \rangle_{\rho_{2x1}}

        """
        rdm1x1 = rdm_c4v.rdm1x1(state, env)
        rdm2x1 = rdm_c4v.rdm2x1(state, env)
        e1s = torch.einsum('ij,ij', rdm1x1, self.h1)
        e2s = torch.einsum('ijab,ijab', rdm2x1, self.h2)
        energy_per_site = (e1s + e2s) / 4
        return energy_per_site
コード例 #2
0
    def eval_obs(self, state, env_c4v):
        r"""
        :param state: wavefunction
        :param env_c4v: CTM c4v symmetric environment
        :type state: IPEPS
        :type env_c4v: ENV_C4V
        :return:  expectation values of observables, labels of observables
        :rtype: list[float], list[str]

        Computes the following observables in order

            1. magnetization
            2. :math:`\langle S^z \rangle,\ \langle S^+ \rangle,\ \langle S^- \rangle`

        where the on-site magnetization is defined as
        
        .. math::
            
            \begin{align*}
            m &= \sqrt{ \langle S^z \rangle^2+\langle S^x \rangle^2+\langle S^y \rangle^2 }
            =\sqrt{\langle S^z \rangle^2+1/4(\langle S^+ \rangle+\langle S^- 
            \rangle)^2 -1/4(\langle S^+\rangle-\langle S^-\rangle)^2} \\
              &=\sqrt{\langle S^z \rangle^2 + 1/2\langle S^+ \rangle \langle S^- \rangle)}
            \end{align*}

        Usual spin components can be obtained through the following relations
        
        .. math::
            
            \begin{align*}
            S^+ &=S^x+iS^y               & S^x &= 1/2(S^+ + S^-)\\
            S^- &=S^x-iS^y\ \Rightarrow\ & S^y &=-i/2(S^+ - S^-)
            \end{align*}
        """
        # TODO optimize/unify ?
        # expect "list" of (observable label, value) pairs ?
        obs = dict()
        with torch.no_grad():
            rdm1x1 = rdm_c4v.rdm1x1(state, env_c4v)
            for label, op in self.obs_ops.items():
                obs[f"{label}"] = torch.trace(rdm1x1 @ op)
            obs[f"m"] = sqrt(abs(obs[f"sz"]**2 + obs[f"sp"] * obs[f"sm"]))

            rdm2x1 = rdm_c4v.rdm2x1(state, env_c4v)
            obs[f"SS2x1"] = torch.einsum('ijab,ijab', rdm2x1, self.h2_rot)

        # prepare list with labels and values
        obs_labels = [f"m"] + [f"{lc}"
                               for lc in self.obs_ops.keys()] + [f"SS2x1"]
        obs_values = [obs[label] for label in obs_labels]
        return obs_values, obs_labels
コード例 #3
0
ファイル: akltS2.py プロジェクト: tateobori/AD-peps
 def energy_1x1(self,state,env_c4v):
     rdm2x1 = rdm_c4v.rdm2x1(state, env_c4v)
     energy = torch.einsum('ijab,ijab',rdm2x1,self.h2_rot)
     return energy