コード例 #1
0
    def do_training(self, fleet):
        dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data(
        )

        exe = fluid.Executor(fluid.CPUPlace())

        fleet.init_worker()
        exe.run(fleet.startup_program)

        thread_num = 2
        filelist = []
        for _ in range(thread_num):
            filelist.append(train_file_path)

        # config dataset
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_batch_size(128)
        dataset.set_use_var(self.feeds)
        pipe_command = 'python ctr_dataset_reader.py'
        dataset.set_pipe_command(pipe_command)

        dataset.set_filelist(filelist)
        dataset.set_thread(thread_num)

        for epoch_id in range(2):
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
                program=fleet.main_program,
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
                print_period=2,
                debug=False)
            pass_time = time.time() - pass_start

        class FH(fluid.executor.FetchHandler):
            def handler(self, fetch_target_vars):
                for i in range(len(fetch_target_vars)):
                    print("{}: \n {}\n".format(self.fetch_target_names[0],
                                               fetch_target_vars[0]))

        for epoch_id in range(2):
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
                program=fleet.main_program,
                dataset=dataset,
                fetch_handler=FH([self.avg_cost.name],
                                 period_secs=2,
                                 return_np=True),
                debug=False)
            pass_time = time.time() - pass_start

        model_dir = tempfile.mkdtemp()
        fleet.save_inference_model(
            exe, model_dir, [feed.name for feed in self.feeds], self.avg_cost)
        self.check_model_right(model_dir)
        shutil.rmtree(model_dir)
        fleet.stop_worker()
コード例 #2
0
ファイル: dist_fleet_ctr.py プロジェクト: pyqt1/MyPaddle
    def do_pyreader_training(self, fleet):
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """
        dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data(
        )

        exe = fluid.Executor(fluid.CPUPlace())

        fleet.init_worker()
        exe.run(fleet.startup_program)

        thread_num = 2
        batch_size = 128
        filelist = []
        for _ in range(thread_num):
            filelist.append(train_file_path)

        train_reader = paddle.batch(paddle.reader.shuffle(
            ctr_dataset_reader.CtrReader()._reader_creator(filelist),
            buf_size=batch_size * 100),
                                    batch_size=batch_size)
        self.reader.decorate_sample_list_generator(train_reader)

        compiled_prog = fluid.compiler.CompiledProgram(
            fleet.main_program).with_data_parallel(
                loss_name=self.avg_cost.name,
                build_strategy=self.strategy.get_build_strategy(),
                exec_strategy=self.strategy.get_execute_strategy())

        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
                    loss_val = exe.run(program=compiled_prog,
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
                    print("TRAIN ---> pass: {} loss: {}\n".format(
                        epoch_id, loss_val))
                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

        model_dir = tempfile.mkdtemp()
        fleet.save_inference_model(exe, model_dir,
                                   [feed.name for feed in self.feeds],
                                   self.avg_cost)
        self.check_model_right(model_dir)
        shutil.rmtree(model_dir)
        fleet.stop_worker()
コード例 #3
0
    def do_dataset_training(self, fleet):
        dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data(
        )

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)
        exe = fluid.Executor(place)

        exe.run(fleet.startup_program)
        fleet.init_worker()

        thread_num = 2
        batch_size = 128
        filelist = []
        for _ in range(thread_num):
            filelist.append(train_file_path)

        # config dataset
        dataset = paddle.distributed.QueueDataset()
        dataset._set_batch_size(batch_size)
        dataset._set_use_var(self.feeds)
        pipe_command = 'python ctr_dataset_reader.py'
        dataset._set_pipe_command(pipe_command)

        dataset.set_filelist(filelist)
        dataset._set_thread(thread_num)

        for epoch_id in range(1):
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
                program=fleet.main_program,
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
                print_period=2,
                debug=int(os.getenv("Debug", "0")))
            pass_time = time.time() - pass_start

        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            if fleet.is_first_worker():
                fleet.save_persistables(executor=exe, dirname=model_dir)
            shutil.rmtree(model_dir)

        fleet.stop_worker()
コード例 #4
0
ファイル: fleet_deep_ctr.py プロジェクト: pyqt1/MyPaddle
def model():
    dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data(
    )
    """ network definition """
    dnn_data = fluid.layers.data(
        name="dnn_data",
        shape=[-1, 1],
        dtype="int64",
        lod_level=1,
        append_batch_size=False)
    lr_data = fluid.layers.data(
        name="lr_data",
        shape=[-1, 1],
        dtype="int64",
        lod_level=1,
        append_batch_size=False)
    label = fluid.layers.data(
        name="click",
        shape=[-1, 1],
        dtype="int64",
        lod_level=0,
        append_batch_size=False)

    datas = [dnn_data, lr_data, label]

    # build dnn model
    dnn_layer_dims = [128, 64, 32, 1]
    dnn_embedding = fluid.layers.embedding(
        is_distributed=False,
        input=dnn_data,
        size=[dnn_input_dim, dnn_layer_dims[0]],
        param_attr=fluid.ParamAttr(
            name="deep_embedding",
            initializer=fluid.initializer.Constant(value=0.01)),
        is_sparse=True)
    dnn_pool = fluid.layers.sequence_pool(input=dnn_embedding, pool_type="sum")
    dnn_out = dnn_pool
    for i, dim in enumerate(dnn_layer_dims[1:]):
        fc = fluid.layers.fc(
            input=dnn_out,
            size=dim,
            act="relu",
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01)),
            name='dnn-fc-%d' % i)
        dnn_out = fc

    # build lr model
    lr_embbding = fluid.layers.embedding(
        is_distributed=False,
        input=lr_data,
        size=[lr_input_dim, 1],
        param_attr=fluid.ParamAttr(
            name="wide_embedding",
            initializer=fluid.initializer.Constant(value=0.01)),
        is_sparse=True)
    lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

    merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

    predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
    acc = fluid.layers.accuracy(input=predict, label=label)
    auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                          label=label)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return datas, avg_cost, predict, train_file_path
コード例 #5
0
ファイル: dist_fleet_ctr.py プロジェクト: pyqt1/MyPaddle
    def net(self, args, batch_size=4, lr=0.01):
        """
        network definition

        Args:
            batch_size(int): the size of mini-batch for training
            lr(float): learning rate of training
        Returns:
            avg_cost: LoDTensor of cost.
        """
        dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data(
        )
        dnn_data = fluid.layers.data(name="dnn_data",
                                     shape=[-1, 1],
                                     dtype="int64",
                                     lod_level=1,
                                     append_batch_size=False)
        lr_data = fluid.layers.data(name="lr_data",
                                    shape=[-1, 1],
                                    dtype="int64",
                                    lod_level=1,
                                    append_batch_size=False)
        label = fluid.layers.data(name="click",
                                  shape=[-1, 1],
                                  dtype="int64",
                                  lod_level=0,
                                  append_batch_size=False)

        datas = [dnn_data, lr_data, label]

        if args.reader == "pyreader":
            self.reader = fluid.io.PyReader(feed_list=datas,
                                            capacity=64,
                                            iterable=False,
                                            use_double_buffer=False)

        # build dnn model
        dnn_layer_dims = [128, 128, 64, 32, 1]
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)
        dnn_pool = fluid.layers.sequence_pool(input=dnn_embedding,
                                              pool_type="sum")
        dnn_out = dnn_pool
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(value=0.01)),
                name='dnn-fc-%d' % i)
            dnn_out = fc

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding,
                                             pool_type="sum")

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
        acc = fluid.layers.accuracy(input=predict, label=label)

        auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                              label=label)

        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        self.feeds = datas
        self.train_file_path = train_file_path
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost
コード例 #6
0
ファイル: dist_fleet_ctr.py プロジェクト: pyqt1/MyPaddle
    def do_dataset_training(self, fleet):
        dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data(
        )

        exe = fluid.Executor(fluid.CPUPlace())

        fleet.init_worker()
        exe.run(fleet.startup_program)

        thread_num = 2
        batch_size = 128
        filelist = []
        for _ in range(thread_num):
            filelist.append(train_file_path)

        # config dataset
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_batch_size(batch_size)
        dataset.set_use_var(self.feeds)
        pipe_command = 'python ctr_dataset_reader.py'
        dataset.set_pipe_command(pipe_command)

        dataset.set_filelist(filelist)
        dataset.set_thread(thread_num)

        for epoch_id in range(1):
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(program=fleet.main_program,
                                   dataset=dataset,
                                   fetch_list=[self.avg_cost],
                                   fetch_info=["cost"],
                                   print_period=2,
                                   debug=int(os.getenv("Debug", "0")))
            pass_time = time.time() - pass_start

        res_dict = dict()
        res_dict['loss'] = self.avg_cost

        class FH(fluid.executor.FetchHandler):
            def handle(self, res_dict):
                for key in res_dict:
                    v = res_dict[key]
                    print("{}: \n {}\n".format(key, v))

        for epoch_id in range(1):
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(program=fleet.main_program,
                                   dataset=dataset,
                                   fetch_handler=FH(var_dict=res_dict,
                                                    period_secs=2),
                                   debug=False)
            pass_time = time.time() - pass_start

        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            shutil.rmtree(model_dir)
        fleet.stop_worker()