class WristSubsystem(Subsystem): def __init__(self): self.encoderUnit = 4096 self.gearRatio = 183.33333333 self.lowerAngleLimit = -10 self.topAngleLimit = 170 self.wristPower = 0 self.wristMotor = TalonSRX(wristMotor) self.wristMotor.configSelectedFeedbackSensor( wristMotor.FeedbackDevice.CTRE_MagEncoder_Relative, 0, 0) self.wristMotor.setSensorPhase(False) #def initDefaultCommand(self): # self.setDefaultCommand(AnalogWristCommand()) def getWristDistanceTicks(self): return self.wristMotor.getSelectedSensorPosition() def getRotationAngle(self): return ( (self.wristMotor.getSelectedSensorPosition() / self.encoderUnit) * (1 / self.gearRatio) * 360) #def isWristTopLimit(self): #def isWristBottomLimit(self): def setWristPower(self, power): if getRotationAngle() >= self.topAngleLimit or getRotationAngle( ) <= self.lowerAngleLimit: wristPower = 0 else: wristPower = power def updateOutputs(self): self.wristMotor.set(BaseMotorController.ControlMode.PercentOutput, self.wristPower * wristSpeedMultiplier)
class Winch: def __init__(self, talon_id): self.talon = TalonSRX(talon_id) self.talon.configSelectedFeedbackSensor( TalonSRX.FeedbackDevice.QuadEncoder, 0, 0) self.talon.setQuadraturePosition(0, 0) self.talon.setInverted(True) def forward(self): self.talon.set(TalonSRX.ControlMode.PercentOutput, 0.75) def reverse(self): self.talon.set(TalonSRX.ControlMode.PercentOutput, -0.75) def stop(self): self.talon.set(TalonSRX.ControlMode.PercentOutput, 0) def update_smart_dashboard(self): wpilib.SmartDashboard.putNumber( "Winch Position", self.talon.getSelectedSensorPosition(0)) wpilib.SmartDashboard.putNumber("Winch Quad Position", self.talon.getQuadraturePosition())
class RD4BLift: """ This class contains helper functions for manipulating the position of the RD4B lift. Parameters: left_id: the ID number of the left talon. right_id: the ID number of the right talon. """ #: Length for one segment of the arm. As of the time this comment #: was written a segment is 30 inches long. ARM_LENGTH = 30 def __init__(self, left_id, right_id): """ Create a new instance of the RD4B lift. Calling this constructor initializes the two drive motors and configures their control modes, and also loads the configuration values from preferences. """ # Create new instances of CANTalon for the left and right motors. self.left_motor = TalonSRX(left_id) self.right_motor = TalonSRX(right_id) # The right motor will follow the left motor, so we will configure # the left motor as Position control mode, and have the right motor # follow it. self.left_motor.configSelectedFeedbackSensor( TalonSRX.FeedbackDevice.Analog, 0, 0) self.left_motor.selectProfileSlot(0, 0) self.right_motor.set(TalonSRX.ControlMode.Follower, left_id) # finally, load the configuration values. self.load_config_values() def load_config_values(self): """ Internal helper function for configuration values. This function loads/reloads configuration values from Preferences. The necessary keys that need to be defined are: - "lift potentiometer horizontal angle" - "lift potentiometer base angle" - "lift limit up" This function also precalculates values that are used throughout the code and sets soft limits for the motor based on encoder values. """ # get the preferences instance. preferences = wpilib.Preferences.getInstance() # get the encoder value when the bars are horizontal and form right # angles. This is used for calculations. self.HORIZONTAL_ANGLE = preferences.getFloat( "lift potentiometer horizontal angle", 0) # noqa: E501 # get the encoder value when the RD4B is in the fully down position. self.initial_angle = preferences.getFloat( "lift potentiometer base angle", 0) # noqa: E501 # pre-convert the initial angle to radians and take the sin of the # angle. self.INITIAL_ANGLE_RADIANS_SIN = math.sin( (self.initial_angle - self.HORIZONTAL_ANGLE) / 512 * math.pi) # get the upper limit of the encoder, or the encoder value when the # RD4B is fully extended upward. self.LIMIT_UP = preferences.getFloat("lift limit up", 0) # set the soft limits to LIMIT_UP and the initial angle. the motors # should not go outside of this range. self.left_motor.configForwardSoftLimitThreshold(self.LIMIT_UP, 0) self.left_motor.configReverseSoftLimitThreshold(self.initial_angle, 0) def fully_extend(self): """ Fully extend the RD4B upward. This function runs the motor to the LIMIT_UP position. """ self.left_motor.set(TalonSRX.ControlMode.Position, self.LIMIT_UP) def fully_retract(self): """ Fully retract the RD4B to the lowest position. This function runs the motor to the initial_angle position. """ self.left_motor.set(TalonSRX.ControlMode.Position, self.initial_angle) def set_height(self, inches): """ Set the height for the RD4B lift. Given a height to move to in inches, this function will calculate the angle the motor needs to run to and apply it. The angle is calculated by this equation: .. math:: \\theta _f = \\sin^{-1}(\\frac{\\Delta H}{2 l_{arm}} + \\sin(\\theta_i)) Args: inches: the height in inches to move the RD4B to. """ # calculate the final angle as per the equation given above. final_angle_radians = math.asin(inches / (2 * self.ARM_LENGTH) + self.INITIAL_ANGLE_RADIANS_SIN) # convert this final angle from radians to native units. native_units = ((final_angle_radians * 512 / math.pi) + self.HORIZONTAL_ANGLE) # set the left motor to run to this position (the right motor will # follow it) self.left_motor.set(TalonSRX.ControlMode.Position, native_units) def getHeight(self): """ Get the height of the RD4B. This function will get the angle of the RD4B from the encoder and convert this to a height given this equation: .. math:: \\Delta H = 2 l_{arm} (\\sin(\\theta_f) - \\sin(\\theta_i)) Returns: The height of the RD4B at the time this function is called. """ # get the final angle from the encoder, and convert to radians. final_angle_radians = ((self.left_motor.getSelectedSensorPosition(0) - self.HORIZONTAL_ANGLE) # noqa: E501 * 512 * math.pi) # calculate the height of the RD4B using the final angle and based on # the given equation. height = 2 * self.ARM_LENGTH * (math.sin(final_angle_radians) - self.INITIAL_ANGLE_RADIANS_SIN) return height def isMovementFinished(self): """ Check if the RD4B is in motion. This function gets the closed loop error, which will be very small if the motor is not currently in motion. Returns: True if the RD4B is not in motion False if the RD4B is currently still in motion. """ return self.left_motor.getClosedLoopError(0) < 10 def stop(self): """ Stop the RD4B, no matter what position it is in currently. This can be used as an emergency stop in the case of an encoder breaking, but it can also be used for general purposes if needed. """ # change the control mode to percent vbus and then set the speed to 0. self.left_motor.set(TalonSRX.ControlMode.PercentVBus, 0)
class SwerveModule(object): def __init__(self, name, steer_id, drive_id): """ Performs calculations and bookkeeping for a single swerve module. Args: name (str): A NetworkTables-friendly name for this swerve module. Used for saving and loading configuration data. steer_id (number): The CAN ID for the Talon SRX controlling this module's steering. drive_id (number): The CAN ID for the Talon SRX controlling this module's driving. Attributes: steer_talon (:class:`ctre.cantalon.CANTalon`): The Talon SRX used to actuate this module's steering. drive_talon (:class:`ctre.cantalon.CANTalon`): The Talon SRX used to actuate this module's drive. steer_target (number): The current target steering position for this module, in radians. steer_offset (number): The swerve module's steering zero position. This value can be determined by manually steering a swerve module so that it faces forwards relative to the chassis, and by taking the raw encoder position value (ADC reading); this value is the steer offset. drive_reversed (boolean): Whether or not the drive motor's output is currently reversed. """ self.steer_talon = TalonSRX(steer_id) self.drive_talon = TalonSRX(drive_id) # Configure steering motors to use abs. encoders # and closed-loop control self.steer_talon.configSelectedFeedbackSensor(FeedbackDevice.Analog, 0, 0) # noqa: E501 self.steer_talon.selectProfileSlot(0, 0) self.steer_talon.configAllowableClosedloopError( 0, math.ceil(_acceptable_steer_err), 0) self.drive_talon.configSelectedFeedbackSensor( FeedbackDevice.QuadEncoder, 0, 0) # noqa: E501 self.drive_talon.setQuadraturePosition(0, 0) self.name = name self.steer_target = 0 self.steer_target_native = 0 self.drive_temp_flipped = False self.max_speed = 470 # ticks / 100ms self.max_observed_speed = 0 self.raw_drive_speeds = [] self.load_config_values() def load_config_values(self): """ Load saved configuration values for this module via WPILib's Preferences interface. The key names are derived from the name passed to the constructor. """ self.steer_talon.selectProfileSlot(0, 0) preferences = wpilib.Preferences.getInstance() self.max_speed = preferences.getFloat(self.name + '-Max Wheel Speed', 370) sensor_phase = preferences.getBoolean(self.name + '-Sensor Reverse', False) self.drive_talon.setSensorPhase(sensor_phase) self.steer_offset = preferences.getFloat(self.name + '-offset', 0) if _apply_range_hack: self.steer_min = preferences.getFloat(self.name + '-min', 0) self.steer_max = preferences.getFloat(self.name + '-max', 1024) actual_steer_range = int(self.steer_max - self.steer_min) self.steer_min += int(actual_steer_range * 0.01) self.steer_max -= int(actual_steer_range * 0.01) self.steer_offset -= self.steer_min self.steer_range = int(self.steer_max - self.steer_min) else: self.steer_min = 0 self.steer_max = 1024 self.steer_range = 1024 self.drive_reversed = preferences.getBoolean(self.name + '-reversed', False) self.steer_reversed = preferences.getBoolean( self.name + '-steer-reversed', False) def save_config_values(self): """ Save configuration values for this module via WPILib's Preferences interface. """ preferences = wpilib.Preferences.getInstance() preferences.putFloat(self.name + '-offset', self.steer_offset) preferences.putBoolean(self.name + '-reversed', self.drive_reversed) if _apply_range_hack: preferences.putFloat(self.name + '-min', self.steer_min) preferences.putFloat(self.name + '-max', self.steer_max) def get_steer_angle(self): """ Get the current angular position of the swerve module in radians. """ native_units = self.steer_talon.getSelectedSensorPosition(0) native_units -= self.steer_offset # Position in rotations rotation_pos = native_units / self.steer_range return rotation_pos * 2 * math.pi def set_steer_angle(self, angle_radians): """ Steer the swerve module to the given angle in radians. `angle_radians` should be within :math:`[-2\\pi, 2\\pi]`. This method attempts to find the shortest path to the given steering angle; thus, it may in actuality servo to the position opposite the passed angle and reverse the drive direction. Args: angle_radians (number): The angle to steer towards in radians, where 0 points in the chassis forward direction. """ n_rotations = math.trunc( (self.steer_talon.getSelectedSensorPosition(0) - self.steer_offset) / self.steer_range) current_angle = self.get_steer_angle() adjusted_target = angle_radians + (n_rotations * 2 * math.pi) # Perform angle unwrapping for target angles. # This prevents issues resulting from discontinuities in input angle # ranges. if abs(adjusted_target - current_angle) - math.pi > 0.0005: if adjusted_target > current_angle: adjusted_target -= 2 * math.pi else: adjusted_target += 2 * math.pi # Shortest-path servoing should_reverse_drive = False if abs(adjusted_target - current_angle) - (math.pi / 2) > 0.0005: # shortest path is to move to opposite angle and reverse drive dir if adjusted_target > current_angle: adjusted_target -= math.pi else: # angle_radians < local_angle adjusted_target += math.pi should_reverse_drive = True self.steer_target = adjusted_target # Compute and send actual target to motor controller native_units = (self.steer_target * 512 / math.pi) + self.steer_offset self.steer_talon.set(ControlMode.Position, native_units) self.drive_temp_flipped = should_reverse_drive def set_drive_speed(self, speed, direct=False): """ Drive the swerve module wheels at a given percentage of maximum power or speed. Args: percent_speed (number): The speed to drive the module at, expressed as a percentage of maximum speed. Negative values drive in reverse. """ if self.drive_reversed: speed *= -1 if self.drive_temp_flipped: speed *= -1 self.drive_talon.selectProfileSlot(1, 0) self.drive_talon.config_kF(0, 1023 / self.max_speed, 0) if direct: self.drive_talon.set(ControlMode.Velocity, speed) else: self.drive_talon.set(ControlMode.Velocity, speed * self.max_speed) def set_drive_distance(self, ticks): if self.drive_reversed: ticks *= -1 if self.drive_temp_flipped: ticks *= -1 self.drive_talon.selectProfileSlot(0, 0) self.drive_talon.set(ControlMode.Position, ticks) def reset_drive_position(self): self.drive_talon.setQuadraturePosition(0, 0) def apply_control_values(self, angle_radians, speed, direct=False): """ Set a steering angle and a drive speed simultaneously. Args: angle_radians (number): The desired angle to steer towards. percent_speed (number): The desired percentage speed to drive at. See Also: :func:`~set_drive_speed` and :func:`~set_steer_angle` """ self.set_steer_angle(angle_radians) self.set_drive_speed(speed, direct) def update_smart_dashboard(self): """ Push various pieces of info to the Smart Dashboard. This method calls to NetworkTables (eventually), thus it may be _slow_. As of right now, this displays the current raw absolute encoder reading from the steer Talon, and the current target steer position. """ wpilib.SmartDashboard.putNumber( self.name + ' Position', (self.steer_talon.getSelectedSensorPosition(0) - self.steer_offset) * 180 / 512) wpilib.SmartDashboard.putNumber(self.name + ' ADC', self.steer_talon.getAnalogInRaw()) wpilib.SmartDashboard.putNumber(self.name + ' Target', self.steer_target * 180 / math.pi) wpilib.SmartDashboard.putNumber(self.name + ' Steer Error', self.steer_talon.getClosedLoopError(0)) wpilib.SmartDashboard.putNumber(self.name + ' Drive Error', self.drive_talon.getClosedLoopError(0)) wpilib.SmartDashboard.putNumber( self.name + ' Drive Ticks', self.drive_talon.getQuadraturePosition()) self.raw_drive_speeds.append(self.drive_talon.getQuadratureVelocity()) if len(self.raw_drive_speeds) > 50: self.raw_drive_speeds = self.raw_drive_speeds[-50:] self.cur_drive_spd = np.mean(self.raw_drive_speeds) if abs(self.cur_drive_spd) > abs(self.max_observed_speed): self.max_observed_speed = self.cur_drive_spd wpilib.SmartDashboard.putNumber(self.name + ' Drive Velocity', self.cur_drive_spd) wpilib.SmartDashboard.putNumber(self.name + ' Drive Velocity (Max)', self.max_observed_speed) if wpilib.RobotBase.isReal(): wpilib.SmartDashboard.putNumber( self.name + ' Drive Percent Output', self.drive_talon.getMotorOutputPercent()) wpilib.SmartDashboard.putNumber( self.name + ' Drive Current', self.drive_talon.getOutputCurrent()) wpilib.SmartDashboard.putNumber( self.name + ' Steer Current', self.steer_talon.getOutputCurrent())
class ManualControlLift: def __init__( self, main_lift_id, follower_id, bottom_limit_channel, start_lim_channel ): self.main_lift_id = main_lift_id self.follower_id = follower_id self.lift_main = TalonSRX(main_lift_id) self.lift_follower = TalonSRX(follower_id) self.lift_main.configSelectedFeedbackSensor( TalonSRX.FeedbackDevice.PulseWidthEncodedPosition, 0, 0 ) # self.lift_main.setPulseWidthPosition(0, 0) self.lift_follower.configSelectedFeedbackSensor( TalonSRX.FeedbackDevice.PulseWidthEncodedPosition, 0, 0 ) # self.lift_follower.setPulseWidthPosition(0, 0) self.lift_follower.set( TalonSRX.ControlMode.Follower, main_lift_id ) self.lift_follower.setInverted(True) self.lift_timer = wpilib.Timer() self.timer_started = False self.lift_stop_timer = wpilib.Timer() self.lift_stop_timer_started = False self.lift_zero_found = False self.bottom_limit_switch = wpilib.DigitalInput(bottom_limit_channel) self.start_limit_switch = wpilib.DigitalInput(start_lim_channel) self.sustain = -0.08 def load_config_values(self): prefs = wpilib.Preferences.getInstance() phase = prefs.getBoolean("Lift: Invert Sensor Phase", True) self.sustain = prefs.getFloat("Lift: Idle Sustain", -0.08) self.upper_limit = prefs.getInt("Lift: Upper Limit", None) self.limits_enabled = prefs.getBoolean("Lift: Limits Enabled", False) if self.limits_enabled: # Note: positive / forward power to the motors = lift moves down # negative / reverse power to the motors = lift moves up if self.upper_limit is not None: self.lift_main.configReverseSoftLimitThreshold( int(self.upper_limit), 0 ) self.lift_main.configReverseSoftLimitEnable(True, 0) else: self.lift_main.configReverseSoftLimitEnable(False, 0) self.lift_main.setSensorPhase(phase) self.lift_follower.setSensorPhase(phase) def set_soft_limit_status(self, status): if self.upper_limit is not None: self.lift_main.configReverseSoftLimitEnable(status, 0) else: self.lift_main.configReverseSoftLimitEnable(False, 0) def update_smart_dashboard(self): wpilib.SmartDashboard.putNumber( "Lift Main Position", self.lift_main.getSelectedSensorPosition(0) ) wpilib.SmartDashboard.putNumber( "Lift Follower Position", self.lift_follower.getSelectedSensorPosition(0) ) wpilib.SmartDashboard.putBoolean( "Lift Bottom Limit Switch", not self.bottom_limit_switch.get() ) wpilib.SmartDashboard.putBoolean( "Lift Found Zero", self.lift_zero_found ) wpilib.SmartDashboard.putBoolean( "Lift Start Position Switch", not self.start_limit_switch.get() ) def moveTimed(self, time, power): if not self.timer_started: self.timer_started = True self.lift_timer.reset() self.lift_timer.start() elif self.lift_timer.get() < time: self.lift_main.set(TalonSRX.ControlMode.PercentOutput, power) else: self.lift_main.set(TalonSRX.ControlMode.PercentOutput, 0) def setLiftPower(self, power): if power > 0 and not self.bottom_limit_switch.get(): self.lift_main.set(TalonSRX.ControlMode.PercentOutput, 0) else: self.lift_main.set(TalonSRX.ControlMode.PercentOutput, power) def checkLimitSwitch(self): self.set_soft_limit_status(self.lift_zero_found) if not self.bottom_limit_switch.get(): self.lift_zero_found = True self.lift_main.setPulseWidthPosition(0, 0) self.lift_follower.setPulseWidthPosition(0, 0) self.lift_main.setQuadraturePosition(0, 0) self.lift_follower.setQuadraturePosition(0, 0) def driveToStartingPosition(self): if self.start_limit_switch.get(): self.lift_main.set(TalonSRX.ControlMode.PercentOutput, -0.25) else: self.lift_main.set(TalonSRX.ControlMode.PercentOutput, 0)