コード例 #1
0
ファイル: test_large.py プロジェクト: tmct/cuTWED
def test_large_call():
    """ Test calling twed """
    # Call TWED
    dist = twed(A, TA, B, TB, nu, lamb, degree)

    print('Python cuTWED distance: {:f}'.format(dist))

    assert np.allclose(dist, reference_result)
コード例 #2
0
ファイル: test_basic.py プロジェクト: tmct/cuTWED
def test_basic_call_float():
    """ Test the same call in single precision by feeding different types. """

    dist = twed(A.astype(np.float32), TA.astype(np.float32),
                B.astype(np.float32), TB.astype(np.float32), nu, lamb, degree)

    print('Python cuTWED distance (single precision): {:f}'.format(dist))

    assert np.allclose(dist, reference_result)
コード例 #3
0
ファイル: test_Rn.py プロジェクト: tmct/cuTWED
def test_multi_twed():
    D = np.zeros(sz)
    print("Computing ctwed batch")
    for row, A in enumerate(AA):
        for col, B in enumerate(BB):
            if col < row:
                continue
            dist = twed(A, T, B, T, nu, lamb, degree)
            D[row][col] = dist
    assert np.allclose(D, DIST)
コード例 #4
0
def test_cutwed():
    """ Test running the synthetic control dataset"""

    DistanceMatrix = np.zeros((nseries, nseries))

    for row, A in enumerate(tqdm(TS)):
        for col, B in enumerate(TS):
            if col < row:
                continue
            dist = twed(A, T, B, T, nu, lamb, degree)
            DistanceMatrix[row][col] = dist
            # print(f'Python CTWED distance:\t{row}\t{col}\t{dist:f}')

    name = 'synthetic_distance_matrix_cutwed'
    with open(f'{name}.npy', 'wb') as fh:
        np.save(fh, DistanceMatrix)

    # with sns.axes_style("white"):
    #     sns.heatmap(DistanceMatrix, square=True,  cmap="YlGnBu")
    #     plt.savefig(f'{name}.png')

    return DistanceMatrix
コード例 #5
0
ファイル: test_Rn.py プロジェクト: tmct/cuTWED
def test_single_cutwed():
    print("Computing cutwed")
    dist = twed(A, T, B, T, nu, lamb, degree)
    print(f"Distance: {dist}")
    assert np.allclose(single_ref, dist)
コード例 #6
0
    plt.plot()

# In[9]:

DistanceMatrix_ref[0, -1]

# In[10]:

# Test running the synthetic index dataset"""

DistanceMatrix_cu = np.zeros((nseries, nseries))
for (row, A), (col, B) in tqdm(product(enumerate(TS), enumerate(TS)),
                               total=len(TS)**2):
    if col < row:
        continue
    dist = twed(A, T, B, T, nu, lamb, degree)
    DistanceMatrix_cu[row][col] = dist

with sns.axes_style("white"):
    sns.heatmap(DistanceMatrix_cu, square=True, cmap="YlGnBu")
    plt.plot()

# In[11]:

DistanceMatrix_cu[0, -1]

# In[12]:

np.max(np.abs(DistanceMatrix_cu - DistanceMatrix_ref))

# In[13]: