def test_template(): size = 100 # Float prefactors ensure that image range is between 0 and 1 image = np.full((400, 400), 0.5) target = 0.1 * (np.tri(size) + np.tri(size)[::-1]) target_positions = [(50, 50), (200, 200)] for x, y in target_positions: image[x:x + size, y:y + size] = target np.random.seed(1) image += 0.1 * np.random.uniform(size=(400, 400)) image = cp.asarray(image) target = cp.asarray(target) result = match_template(image, target) delta = 5 positions = peak_local_max(result, min_distance=delta) if len(positions) > 2: # Keep the two maximum peaks. intensities = result[tuple(positions.T)] i_maxsort = cp.argsort(intensities)[::-1] positions = positions[i_maxsort][:2] # Sort so that order matches `target_positions`. positions = positions[cp.argsort(positions[:, 0])] for xy_target, xy in zip(target_positions, positions): assert_array_almost_equal(xy, xy_target)
def test_normalization(): """Test that `match_template` gives the correct normalization. Normalization gives 1 for a perfect match and -1 for an inverted-match. This test adds positive and negative squares to a zero-array and matches the array with a positive template. """ n = 5 N = 20 ipos, jpos = (2, 3) ineg, jneg = (12, 11) image = cp.full((N, N), 0.5) image[ipos:ipos + n, jpos:jpos + n] = 1 image[ineg:ineg + n, jneg:jneg + n] = 0 # white square with a black border template = cp.zeros((n + 2, n + 2)) template[1:1 + n, 1:1 + n] = 1 result = match_template(image, template) # get the max and min results. sorted_result = cp.argsort(result.ravel()) iflat_min = cp.asnumpy(sorted_result[0]) iflat_max = cp.asnumpy(sorted_result[-1]) min_result = np.unravel_index(iflat_min, result.shape) max_result = np.unravel_index(iflat_max, result.shape) # shift result by 1 because of template border assert np.all((np.array(min_result) + 1) == (ineg, jneg)) assert np.all((np.array(max_result) + 1) == (ipos, jpos)) assert cp.allclose(result.ravel()[iflat_min], -1) assert cp.allclose(result.ravel()[iflat_max], 1)
def test_pad_input(): """Test `match_template` when `pad_input=True`. This test places two full templates (one with values lower than the image mean, the other higher) and two half templates, which are on the edges of the image. The two full templates should score the top (positive and negative) matches and the centers of the half templates should score 2nd. """ # Float prefactors ensure that image range is between 0 and 1 template = 0.5 * diamond(2) image = 0.5 * cp.ones((9, 19)) mid = slice(2, 7) image[mid, :3] -= template[:, -3:] # half min template centered at 0 image[mid, 4:9] += template # full max template centered at 6 image[mid, -9:-4] -= template # full min template centered at 12 image[mid, -3:] += template[:, :3] # half max template centered at 18 result = match_template(image, template, pad_input=True, constant_values=float(image.mean())) # get the max and min results. sorted_result = cp.argsort(result.ravel()) i, j = cp.unravel_index(sorted_result[:2], result.shape) assert_array_equal(j, (12, 0)) i, j = cp.unravel_index(sorted_result[-2:], result.shape) assert_array_equal(j, (18, 6))
def test_bounding_values(): image = img_as_float(cp.asarray(data.page())) template = cp.zeros((3, 3)) template[1, 1] = 1 result = match_template(image, template) print(result.max()) assert result.max() < 1 + 1e-7 assert result.min() > -1 - 1e-7
def test_padding_reflect(): template = diamond(2) image = cp.zeros((10, 10)) image[2:7, :3] = template[:, -3:] result = match_template(image, template, pad_input=True, mode="reflect") assert_equal(np.unravel_index(int(result.argmax()), result.shape), (4, 0))
def test_no_nans(): """Test that `match_template` doesn't return NaN values. When image values are only slightly different, floating-point errors can cause a subtraction inside of a square root to go negative (without an explicit check that was added to `match_template`). """ np.random.seed(1) image = 0.5 + 1e-9 * np.random.normal(size=(20, 20)) template = np.ones((6, 6)) template[:3, :] = 0 image = cp.asarray(image) template = cp.asarray(template) result = match_template(image, template) assert not cp.any(cp.isnan(result))
def test_3d_pad_input(): np.random.seed(1) template = np.random.rand(3, 3, 3) image = np.zeros((12, 12, 12)) image[3:6, 5:8, 4:7] = template image = cp.asarray(image) template = cp.asarray(template) result = match_template(image, template, pad_input=True) assert_equal(result.shape, (12, 12, 12)) assert_equal(np.unravel_index(int(result.argmax()), result.shape), (4, 6, 5))
def test_wrong_input(): image = cp.ones((5, 5, 1)) template = cp.ones((3, 3)) with pytest.raises(ValueError): match_template(template, image) image = cp.ones((5, 5)) template = cp.ones((3, 3, 2)) with pytest.raises(ValueError): match_template(template, image) image = cp.ones((5, 5, 3, 3)) template = cp.ones((3, 3, 2)) with pytest.raises(ValueError): match_template(template, image)
def test_switched_arguments(): image = cp.ones((5, 5)) template = cp.ones((3, 3)) with pytest.raises(ValueError): match_template(template, image)