def test_enforce_connectivity(): img = np.array( [[0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 0]], np.float) segments_connected = slic( img, 2, compactness=0.0001, enforce_connectivity=True, convert2lab=False, ) # Make sure nothing fatal occurs (e.g. buffer overflow) at low values of # max_size_factor segments_connected_low_max = slic( img, 2, compactness=0.0001, enforce_connectivity=True, convert2lab=False, max_size_factor=0.8, ) result_connected = np.array( [[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]], np.float) assert_equal(segments_connected, result_connected) assert_equal(segments_connected_low_max, result_connected)
def cuda_slic(): labels = slic(img_lab, n_segments=100, compactness=5, max_iter=5, convert2lab=False, enforce_connectivity=False) return labels
def test_spacing(): rnd = np.random.RandomState(0) img = np.array([[1, 1, 1, 0, 0], [1, 1, 0, 0, 0]], np.float) result_non_spaced = np.array([[0, 0, 0, 1, 1], [0, 0, 1, 1, 1]], np.int) result_spaced = np.array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1]], np.int) img += 0.1 * rnd.normal(size=img.shape) seg_non_spaced = slic(img, n_segments=2, multichannel=False, compactness=1.0) seg_spaced = slic( img, n_segments=2, spacing=[1, 500, 1], compactness=1.0, multichannel=False, ) assert_equal(seg_non_spaced, result_non_spaced) assert_equal(seg_spaced, result_spaced)
def test_more_segments_than_pixels(): rnd = np.random.RandomState(0) img = np.zeros((20, 21)) img[:10, :10] = 0.33 img[10:, :10] = 0.67 img[10:, 10:] = 1.00 img += 0.0033 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic( img, n_segments=500, compactness=1, multichannel=False, convert2lab=False, ) assert np.all(seg.ravel() == np.arange(seg.size))
def test_color_3d(): rnd = np.random.RandomState(0) img = np.zeros((20, 21, 22, 3)) slices = [] for dim_size in img.shape[:-1]: midpoint = dim_size // 2 slices.append((slice(None, midpoint), slice(midpoint, None))) slices = list(product(*slices)) colors = list(product(*(([0, 1], ) * 3))) for s, c in zip(slices, colors): img[s] = c img += 0.01 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, n_segments=8) assert_equal(len(np.unique(seg)), 8) for s, c in zip(slices, range(8)): assert_equal(seg[s], c)
def test_multichannel_2d(): rnd = np.random.RandomState(0) img = np.zeros((20, 20, 8)) img[:10, :10, 0:2] = 1 img[:10, 10:, 2:4] = 1 img[10:, :10, 4:6] = 1 img[10:, 10:, 6:8] = 1 img += 0.01 * rnd.normal(size=img.shape) img = np.clip(img, 0, 1, out=img) seg = slic(img, n_segments=4, enforce_connectivity=False) seg = seg - 1 # we expect 4 segments assert_equal(len(np.unique(seg)), 4) assert_equal(seg.shape, img.shape[:-1]) assert_equal(seg[:10, :10], 0) assert_equal(seg[10:, :10], 2) assert_equal(seg[:10, 10:], 1) assert_equal(seg[10:, 10:], 3)
def test_color_2d(): rnd = np.random.RandomState(0) img = np.zeros((20, 21, 3)) img[:10, :10, 0] = 1 img[10:, :10, 1] = 1 img[10:, 10:, 2] = 1 img += 0.01 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, n_segments=4, enforce_connectivity=False) seg = seg - 1 # we expect 4 segments assert_equal(len(np.unique(seg)), 4) assert_equal(seg.shape, img.shape[:-1]) assert_equal(seg[:10, :10], 0) assert_equal(seg[10:, :10], 2) assert_equal(seg[:10, 10:], 1) assert_equal(seg[10:, 10:], 3)
def test_gray_2d(): rnd = np.random.RandomState(0) img = np.zeros((20, 21)) img[:10, :10] = 0.33 img[10:, :10] = 0.67 img[10:, 10:] = 1.00 img += 0.0033 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, n_segments=4, compactness=1, multichannel=False, convert2lab=False) assert_equal(len(np.unique(seg)), 4) assert_equal(seg.shape, img.shape) assert_equal(seg[:10, :10], 0) assert_equal(seg[10:, :10], 2) assert_equal(seg[:10, 10:], 1) assert_equal(seg[10:, 10:], 3)
def test_gray_3d(): rnd = np.random.RandomState(0) img = np.zeros((20, 21, 22)) slices = [] for dim_size in img.shape: midpoint = dim_size // 2 slices.append((slice(None, midpoint), slice(midpoint, None))) slices = list(product(*slices)) shades = np.arange(0, 1.000001, 1.0 / 7) for s, sh in zip(slices, shades): img[s] = sh img += 0.001 * rnd.normal(size=img.shape) img[img > 1] = 1 img[img < 0] = 0 seg = slic(img, n_segments=8, compactness=1, multichannel=False, convert2lab=False) assert_equal(len(np.unique(seg)), 8) for s, c in zip(slices, range(8)): assert_equal(seg[s], c)
def cuda_slic(img_lab, n_segments, compactness, max_iter=3): labels = slic(img_lab, n_segments=n_segments, compactness=compactness, max_iter=max_iter, convert2lab=False, enforce_connectivity=False) return labels
def test_dtype_support(dtype): img = np.random.rand(28, 28).astype(dtype) # Simply run the function to assert that it runs without error slic(img)
def test_invalid_lab_conversion(): img = np.array([[1, 1, 1, 0, 0], [1, 1, 0, 0, 0]], np.float) + 1 with testing.raises(ValueError): slic(img, multichannel=True, convert2lab=True)