def prepare(self): if FLAGS.mode == 'test': FLAGS.batch_size = 1 self.learning_rate = tf.placeholder(tf.float32, name='learning_rate') self.images = tf.placeholder( tf.float32, [2, FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3], name='images') self.labels = tf.placeholder(tf.float32, [FLAGS.batch_size, 2], name='labels') self.is_train = tf.placeholder(tf.bool, name='is_train') self.global_step = tf.Variable(0, name='global_step', trainable=False) weight_decay = 0.0005 self.tarin_num_id = 0 val_num_id = 0 if FLAGS.mode == 'train': self.tarin_num_id = cuhk03_dataset.get_num_id( FLAGS.data_dir, 'train') elif FLAGS.mode == 'val': val_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'val') images1, images2 = self.preprocess(self.images, self.is_train) print('Build network') logits = self.network(images1, images2, weight_decay) self.loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=logits)) self.inference = tf.nn.softmax(logits) optimizer = tf.train.MomentumOptimizer(self.learning_rate, momentum=0.9) self.train = optimizer.minimize(self.loss, global_step=self.global_step) lr = FLAGS.learning_rate os.environ['CUDA_VISIBLE_DEVICES'] = '0' self.gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
def main(argv=None): if FLAGS.mode == 'test': FLAGS.batch_size = 1 learning_rate = tf.placeholder(tf.float32, name='learning_rate') images = tf.placeholder(tf.float32, [2, FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3], name='images') labels = tf.placeholder(tf.float32, [FLAGS.batch_size, 2], name='labels') is_train = tf.placeholder(tf.bool, name='is_train') global_step = tf.Variable(0, name='global_step', trainable=False) weight_decay = 0.0005 tarin_num_id = 0 val_num_id = 0 if FLAGS.mode == 'train': tarin_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'train') elif FLAGS.mode == 'val': val_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'val') images1, images2 = preprocess(images, is_train) print('Build network') logits = network(images1, images2, weight_decay) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) inference = tf.nn.softmax(logits) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9) train = optimizer.minimize(loss, global_step=global_step) lr = FLAGS.learning_rate with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir) if ckpt and ckpt.model_checkpoint_path: print('Restore model') saver.restore(sess, ckpt.model_checkpoint_path) if FLAGS.mode == 'train': step = sess.run(global_step) for i in range(step, FLAGS.max_steps + 1): batch_images, batch_labels = cuhk03_dataset.read_data(FLAGS.data_dir, 'train', tarin_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = {learning_rate: lr, images: batch_images, labels: batch_labels, is_train: True} sess.run(train, feed_dict=feed_dict) train_loss = sess.run(loss, feed_dict=feed_dict) print('Step: %d, Learning rate: %f, Train loss: %f' % (i, lr, train_loss)) lr = FLAGS.learning_rate * ((0.0001 * i + 1) ** -0.75) if i % 1000 == 0: saver.save(sess, FLAGS.logs_dir + 'model.ckpt', i) elif FLAGS.mode == 'val': total = 0. for _ in range(10): batch_images, batch_labels = cuhk03_dataset.read_data(FLAGS.data_dir, 'val', val_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = {images: batch_images, labels: batch_labels, is_train: False} prediction = sess.run(inference, feed_dict=feed_dict) prediction = np.argmax(prediction, axis=1) label = np.argmax(batch_labels, axis=1) for i in range(len(prediction)): if prediction[i] == label[i]: total += 1 print('Accuracy: %f' % (total / (FLAGS.batch_size * 10))) elif FLAGS.mode == 'test': image1 = cv2.imread(FLAGS.image1) image1 = cv2.resize(image1, (IMAGE_WIDTH, IMAGE_HEIGHT)) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image1 = np.reshape(image1, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) image2 = cv2.imread(FLAGS.image2) image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT)) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) image2 = np.reshape(image2, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) test_images = np.array([image1, image2]) feed_dict = {images: test_images, is_train: False} prediction = sess.run(inference, feed_dict=feed_dict) print(bool(not np.argmax(prediction[0])))
def main(argv=None): if FLAGS.mode == 'test': FLAGS.batch_size = 1 learning_rate = tf.placeholder(tf.float32, name='learning_rate') images = tf.placeholder( tf.float32, [2, FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3], name='images') labels = tf.placeholder(tf.float32, [FLAGS.batch_size, 2], name='labels') is_train = tf.placeholder(tf.bool, name='is_train') global_step = tf.Variable(0, name='global_step', trainable=False) weight_decay = 0.0005 tarin_num_id = 0 val_num_id = 0 if FLAGS.mode == 'train': tarin_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'train') elif FLAGS.mode == 'val': val_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'val') images1, images2 = preprocess(images, is_train) print('Build network') logits = network(images1, images2, weight_decay) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) inference = tf.nn.softmax(logits) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9) train = optimizer.minimize(loss, global_step=global_step) lr = FLAGS.learning_rate with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir) if ckpt and ckpt.model_checkpoint_path: print('Restore model') saver.restore(sess, ckpt.model_checkpoint_path) if FLAGS.mode == 'train': step = sess.run(global_step) for i in xrange(step, FLAGS.max_steps + 1): batch_images, batch_labels = cuhk03_dataset.read_data( FLAGS.data_dir, 'train', tarin_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = { learning_rate: lr, images: batch_images, labels: batch_labels, is_train: True } sess.run(train, feed_dict=feed_dict) train_loss = sess.run(loss, feed_dict=feed_dict) print('Step: %d, Learning rate: %f, Train loss: %f' % (i, lr, train_loss)) lr = FLAGS.learning_rate * ((0.0001 * i + 1)**-0.75) if i % 1000 == 0: saver.save(sess, FLAGS.logs_dir + 'model.ckpt', i) elif FLAGS.mode == 'val': total = 0. for _ in xrange(10): batch_images, batch_labels = cuhk03_dataset.read_data( FLAGS.data_dir, 'val', val_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = { images: batch_images, labels: batch_labels, is_train: False } prediction = sess.run(inference, feed_dict=feed_dict) prediction = np.argmax(prediction, axis=1) label = np.argmax(batch_labels, axis=1) for i in xrange(len(prediction)): if prediction[i] == label[i]: total += 1 print('Accuracy: %f' % (total / (FLAGS.batch_size * 10))) ''' for i in xrange(len(prediction)): print('Prediction: %s, Label: %s' % (prediction[i] == 0, labels[i] == 0)) image1 = cv2.cvtColor(batch_images[0][i], cv2.COLOR_RGB2BGR) image2 = cv2.cvtColor(batch_images[1][i], cv2.COLOR_RGB2BGR) image = np.concatenate((image1, image2), axis=1) cv2.imshow('image', image) key = cv2.waitKey(0) if key == 1048603: # ESC key break ''' elif FLAGS.mode == 'test': # image_path1='20180516_155201_CH05_pic_recog/person/' # image_path2='../persons/'#'20180516_155203_CH19_pic_recog/person/' # save_path1='20180516_sameperson/CH05/' # save_path2='20180718/Preview_192.168.7.27_0_20180718_220140_3056687/'#'20180516_sameperson/CH19/' # if not os.path.exists(save_path1): # os.makedirs(save_path1) # if not os.path.exists(save_path2): # os.makedirs(save_path2) # image_files1=os.listdir(image_path1) # image_files2=os.listdir(image_path2) # flen1=len(image_files1) # flen2=len(image_files2) # print(flen1) # print(flen2) print '--------end---------' image1 = cv2.imread(FLAGS.image1) image1 = cv2.resize(image1, (IMAGE_WIDTH, IMAGE_HEIGHT)) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image1 = np.reshape( image1, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) image2 = cv2.imread(FLAGS.image2) image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT)) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) image2 = np.reshape( image2, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) test_images = np.array([image1, image2]) merged_summary_op = tf.summary.merge_all() writer = tf.summary.FileWriter("./logs/", sess.graph) # print("test_images : "+str(test_images)) #image_shaped_input = tf.reshape(test_images, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]) #tf.summary.image('input1', image_shaped_input, 2) # merged = tf.summary.merge_all() # feed_dict = {images: test_images, is_train: False} # summary=sess.run(merged, feed_dict=feed_dict) feed_dict = {images: test_images, is_train: False} summary, prediction = sess.run([merged_summary_op, inference], feed_dict=feed_dict) print(bool(not np.argmax(prediction[0]))) writer.add_summary(summary) writer.close()
def main(argv=None): if FLAGS.mode == 'test': FLAGS.batch_size = 1 learning_rate = tf.placeholder(tf.float32, name='learning_rate') images = tf.placeholder(tf.float32, [2, FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3], name='images') labels = tf.placeholder(tf.float32, [FLAGS.batch_size, 2], name='labels') is_train = tf.placeholder(tf.bool, name='is_train') global_step = tf.Variable(0, name='global_step', trainable=False) weight_decay = 0.0005 tarin_num_id = 0 val_num_id = 0 if FLAGS.mode == 'train': tarin_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'train') elif FLAGS.mode == 'val': val_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'val') images1, images2 = preprocess(images, is_train) print('Build network') logits = network(images1, images2, weight_decay) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) inference = tf.nn.softmax(logits) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9) train = optimizer.minimize(loss, global_step=global_step) lr = FLAGS.learning_rate with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir) if ckpt and ckpt.model_checkpoint_path: print('Restore model') saver.restore(sess, ckpt.model_checkpoint_path) if FLAGS.mode == 'train': step = sess.run(global_step) for i in xrange(step, FLAGS.max_steps + 1): batch_images, batch_labels = cuhk03_dataset.read_data(FLAGS.data_dir, 'train', tarin_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = {learning_rate: lr, images: batch_images, labels: batch_labels, is_train: True} sess.run(train, feed_dict=feed_dict) train_loss = sess.run(loss, feed_dict=feed_dict) print('Step: %d, Learning rate: %f, Train loss: %f' % (i, lr, train_loss)) lr = FLAGS.learning_rate * ((0.0001 * i + 1) ** -0.75) if i % 1000 == 0: saver.save(sess, FLAGS.logs_dir + 'model.ckpt', i) elif FLAGS.mode == 'val': total = 0. for _ in xrange(10): batch_images, batch_labels = cuhk03_dataset.read_data(FLAGS.data_dir, 'val', val_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = {images: batch_images, labels: batch_labels, is_train: False} prediction = sess.run(inference, feed_dict=feed_dict) prediction = np.argmax(prediction, axis=1) label = np.argmax(batch_labels, axis=1) for i in xrange(len(prediction)): if prediction[i] == label[i]: total += 1 print('Accuracy: %f' % (total / (FLAGS.batch_size * 10))) ''' for i in xrange(len(prediction)): print('Prediction: %s, Label: %s' % (prediction[i] == 0, labels[i] == 0)) image1 = cv2.cvtColor(batch_images[0][i], cv2.COLOR_RGB2BGR) image2 = cv2.cvtColor(batch_images[1][i], cv2.COLOR_RGB2BGR) image = np.concatenate((image1, image2), axis=1) cv2.imshow('image', image) key = cv2.waitKey(0) if key == 1048603: # ESC key break ''' elif FLAGS.mode == 'test': # image_path1='20180516_155201_CH05_pic_recog/person/' # image_path2='../persons/'#'20180516_155203_CH19_pic_recog/person/' # save_path1='20180516_sameperson/CH05/' # save_path2='20180718/Preview_192.168.7.27_0_20180718_220140_3056687/'#'20180516_sameperson/CH19/' # if not os.path.exists(save_path1): # os.makedirs(save_path1) # if not os.path.exists(save_path2): # os.makedirs(save_path2) # image_files1=os.listdir(image_path1) # image_files2=os.listdir(image_path2) # flen1=len(image_files1) # flen2=len(image_files2) # print(flen1) # print(flen2) # flags1=[0]*(flen1) # flags2=[0]*(flen2) # index1_1=1#4115#1 # maxindex1=9230#4116#9230 # initpath1='20180516_155201_CH05_pic_recog/initperson/' # init_persons1=os.listdir(initpath1) # initp1={} # for i in range(len(init_persons1)): # initp1[i]=initpath1+init_persons1[i] # new_path=save_path1+str(i) # if not os.path.exists(new_path): # os.makedirs(new_path) # shutil.copyfile(initpath1+init_persons1[i],new_path+'/'+init_persons1[i]) # if not os.path.exists(save_path1+'nones'): # os.makedirs(save_path1+'nones') # while index1_1<maxindex1: # maxindexes=[] # maxscores=[] # im2_names=[] # for j in range(flen1): # index1_2=int(image_files1[j].split('.jpg')[0].split('_')[-1]) # if index1_2==(index1_1+1): # im2_names.append(image_files1[j]) # for nm2 in range(len(im2_names)): # im2=image_path1+im2_names[nm2] # im2_scores={} # maxindex=-1 # maxscore=0.0 # for nm1 in range(len(initp1)): # im1=initp1[nm1] # y1_1=int(im1.split('_')[-6]) # x1_1=int(im1.split('_')[-5]) # y1_2=int(im1.split('_')[-4]) # x1_2=int(im1.split('_')[-3]) # y1_0=(y1_1+y1_2)/2.0 # x1_0=(x1_1+x1_2)/2.0 # y2_1=int(im2.split('_')[-6]) # x2_1=int(im2.split('_')[-5]) # y2_2=int(im2.split('_')[-4]) # x2_2=int(im2.split('_')[-3]) # y2_0=(y2_1+y2_2)/2.0 # x2_0=(x2_1+x2_2)/2.0 # dist=math.sqrt(math.pow(y1_0-y2_0,2)+math.pow(x1_0-x2_0,2)) # predtemp=0.0 # if dist>50: # predtemp=0.0 # else: # predtemp=cmpims(im1,im2,inference,images,is_train,sess) # im2_scores[nm1]=predtemp # if predtemp>maxscore and predtemp>0.9: # maxindex=nm1 # maxscore=predtemp # maxindexes.append(maxindex) # maxscores.append(im2_scores) # while True: # moreindexes=[] # for a in maxindexes: # if maxindexes.count(a)>1 and (not a in moreindexes): # moreindexes.append(a) # if len(moreindexes)==0: # break # if len(moreindexes)==1 and moreindexes[0]==-1: # break # for a in moreindexes: # flag=0 # list_index=[] # for n in range(maxindexes.count(a)): # sec=flag # flag=maxindexes[flag:].index(a) # list_index.append(flag+sec) # flag=list_index[-1:][0]+1 # print str(a)+" : "+str(list_index) # temp_index=list_index[0] # for m in list_index: # if(maxscores[m].get(a)>maxscores[temp_index].get(a)): # temp_index=m # for m in list_index: # if m!=temp_index: # nextindex=findNextMax(maxscores[m],maxscores[m].get(a)) # if nextindex==-1: # maxindexes[m]=-1 # elif maxscores[m][nextindex] < 0.9: # maxindexes[m]=-1 # else: # maxindexes[m]=nextindex # for m in range(len(maxindexes)): # maxindex=maxindexes[m] # if maxindex!=-1: # shutil.copyfile(image_path1+im2_names[m],save_path1+str(maxindex)+'/'+im2_names[m]) # initp1[maxindex]=save_path1+str(maxindex)+'/'+im2_names[m] # else: # shutil.copyfile(image_path1+im2_names[m],save_path1+'nones/'+im2_names[m]) # index1_1=index1_1+1 print '--------end---------' image1 = cv2.imread(FLAGS.image1) image1 = cv2.resize(image1, (IMAGE_WIDTH, IMAGE_HEIGHT)) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image1 = np.reshape(image1, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) image2 = cv2.imread(FLAGS.image2) image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT)) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) image2 = np.reshape(image2, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) test_images = np.array([image1, image2]) feed_dict = {images: test_images, is_train: False} prediction,pool1_2 = sess.run(inference, feed_dict=feed_dict) print(bool(not np.argmax(prediction[0])))
def main(argv=None): if FLAGS.mode == 'test': FLAGS.batch_size = 1 if FLAGS.mode == 'data': FLAGS.batch_size = 1 learning_rate = tf.placeholder(tf.float32, name='learning_rate') images = tf.placeholder(tf.float32, [2, FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3], name='images') labels = tf.placeholder(tf.float32, [FLAGS.batch_size, 2], name='labels') is_train = tf.placeholder(tf.bool, name='is_train') global_step = tf.Variable(0, name='global_step', trainable=False) weight_decay = 0.0005 tarin_num_id = 0 val_num_id = 0 if FLAGS.mode == 'train': tarin_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'train') elif FLAGS.mode == 'val': val_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'val') images1, images2 = preprocess(images, is_train) print('=======================Build Network=======================') logits = network(images1, images2, weight_decay) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) inference = tf.nn.softmax(logits) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9) train = optimizer.minimize(loss, global_step=global_step) lr = FLAGS.learning_rate with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir) if ckpt and ckpt.model_checkpoint_path: print('==================================Restore model==================================') saver.restore(sess, ckpt.model_checkpoint_path) if FLAGS.mode == 'train': step = sess.run(global_step) for i in range(step, FLAGS.max_steps + 1): batch_images, batch_labels = cuhk03_dataset.read_data(FLAGS.data_dir, 'train', tarin_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = {learning_rate: lr, images: batch_images, labels: batch_labels, is_train: True} sess.run(train, feed_dict=feed_dict) train_loss = sess.run(loss, feed_dict=feed_dict) print('Step: %d, Learning rate: %f, Train loss: %f' % (i, lr, train_loss)) lr = FLAGS.learning_rate * ((0.0001 * i + 1) ** -0.75) if i % 1000 == 0: saver.save(sess, FLAGS.logs_dir + 'model.ckpt', i) elif FLAGS.mode == 'val': total = 0. for _ in range(10): batch_images, batch_labels = cuhk03_dataset.read_data(FLAGS.data_dir, 'val', val_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = {images: batch_images, labels: batch_labels, is_train: False} prediction = sess.run(inference, feed_dict=feed_dict) prediction = np.argmax(prediction, axis=1) label = np.argmax(batch_labels, axis=1) for i in range(len(prediction)): if prediction[i] == label[i]: total += 1 print('Accuracy: %f' % (total / (FLAGS.batch_size * 10))) ''' for i in range(len(prediction)): print('Prediction: %s, Label: %s' % (prediction[i] == 0, labels[i] == 0)) image1 = cv2.cvtColor(batch_images[0][i], cv2.COLOR_RGB2BGR) image2 = cv2.cvtColor(batch_images[1][i], cv2.COLOR_RGB2BGR) image = np.concatenate((image1, image2), axis=1) cv2.imshow('image', image) key = cv2.waitKey(0) if key == 1048603: # ESC key break ''' elif FLAGS.mode == 'test': image1 = cv2.imread(FLAGS.image1) image1 = cv2.resize(image1, (IMAGE_WIDTH, IMAGE_HEIGHT)) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image2 = cv2.imread(FLAGS.image2) image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT)) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) f = plt.figure() f.add_subplot(1,2, 1) plt.imshow(image1) f.add_subplot(1,2, 2) plt.imshow(image2) plt.show() print("===============================Show Images==================================================") start = time.time() image1 = np.reshape(image1, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) image2 = np.reshape(image2, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) test_images = np.array([image1, image2]) test_images2 = np.array([image2, image1]) feed_dict = {images: test_images, is_train: False} feed_dict2 = {images: test_images2, is_train: False} #print(feed_dict) prediction = sess.run(inference, feed_dict=feed_dict) prediction2 = sess.run(inference, feed_dict=feed_dict2) print("=======================Prediction1=======================") print(prediction) print(bool(not np.argmax(prediction[0]))) #print(prediction[0]) print("=======================Prediction2=======================") print(prediction2) print(bool(not np.argmax(prediction2[0]))) end = time.time() print("Time in seconds: ") print(end - start) elif FLAGS.mode == 'data': print("path_test:",FLAGS.path_test) files = sorted(glob.glob('/home/oliver/Documentos/person-reid/video3_4/*.png')) print(len(files)) image1 = cv2.imread(FLAGS.image1) image1 = cv2.resize(image1, (IMAGE_WIDTH, IMAGE_HEIGHT)) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) plt.imshow(image1) plt.show() ''' image2 = cv2.imread(FLAGS.image2) image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT)) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) f = plt.figure() f.add_subplot(1,2, 1) plt.imshow(image1) f.add_subplot(1,2, 2) plt.imshow(image2) plt.show() print("===============================Show Images==================================================") ''' start = time.time() image1 = np.reshape(image1, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) #image2 = np.reshape(image2, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) #list_pred=[] #list_bool=[] list_all = [] for x in files: image2 = cv2.imread(x) image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT)) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) image2 = np.reshape(image2, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) test_images = np.array([image1, image2]) feed_dict = {images: test_images, is_train: False} prediction = sess.run(inference, feed_dict=feed_dict) #print(bool(not np.argmax(prediction[0]))) #list_bool.append(bool(not np.argmax(prediction[0]))) #list_pred.append(prediction[0]) if bool(not np.argmax(prediction[0])): tupl = (x, prediction[0][0], prediction[0][1]) list_all.append(tupl) list_all.sort(key = sortSecond , reverse = True) end = time.time() print("Time in seconds: ") print(end - start) #print (list_all) print ("size list: ", len(list_all)) ####3 #cv2.namedWindow('Person-ReID', cv2.WINDOW_FULLSCREEN) #cv2.resizeWindow('Person-ReID', 480, 320) #### i = 0 list_reid = [] for e in list_all: temp_img = cv2.imread(e[0]) temp_img = cv2.cvtColor(temp_img, cv2.COLOR_BGR2RGB) fpath, fname = os.path.split(e[0]) if (i > 15 ): break #plt.imshow(temp_img) #plt.show() #cv2.namedWindow('Person-ReID', cv2.WINDOW_NORMAL) #cv2.imshow('Person-ReID', temp_img) cv2.imwrite("output_query/"+fname, temp_img) #cv2.waitKey(1) path_f, name_f = os.path.split(e[0]) splits_coords = name_f.rsplit('_') #print("coord: ",splits_coords) list_reid.append(( int(splits_coords[1]), splits_coords[2], splits_coords[3], splits_coords[4], splits_coords[5])) i = i +1 print (i, e[0]," - ", e[1], " - ", e[2]) list_reid.sort(key = sortFirst) ## sort the coords for num of frame print (list_reid) f_frames = sorted(glob.glob('/home/oliver/Documentos/person-reid/frames/video3/*.png')) j = 0 cv2.namedWindow('Person-ReID', cv2.WINDOW_NORMAL) cv2.resizeWindow('Person-ReID', 640, 480) flag_draw = False k = 0 ###PINTO EN LOS FRAMES for frame in f_frames: imgFrame = cv2.imread(frame , cv2.IMREAD_UNCHANGED) frame_p, frame_n = os.path.split(frame) temp_f = frame_n.rsplit('.') #cv2.imshow('Person-ReID', imgFrame) #cv2.waitKey(1) #print(int(temp_f[0])) if(j < len(list_reid)): if (int(temp_f[0]) == list_reid[j][0]): #pintar como TRUE print (int(temp_f[0]) ,"--entro--",j, " ", list_reid[j]) #cv2.polylines(imgFrame , [np.int0([list_reid[j][1], list_reid[j][2], list_reid[j][3], list_reid[j][4]]).reshape((-1, 1, 2))], True, (0, 255, 0), 3) #cv2.rectangle(imgFrame,(int(list_reid[j][4]), int(list_reid[j][3])) , (int(list_reid[j][2]),int(list_reid[j][1])), (0, 255, 0), 3) #cv2.rectangle(imgFrame,(int(list_reid[j][3]), int(list_reid[j][4])),(int(list_reid[j][1]), int(list_reid[j][2])), (0, 255, 0), 3) #color = cv2.cvtColor(np.uint8([[[num_random, 128, 200]]]),cv2.COLOR_HSV2RGB).squeeze().tolist() ##################### #color = cv2.cvtColor(np.uint8([[[0, 128, 200]]]),cv2.COLOR_HSV2RGB).squeeze().tolist() cv2.rectangle(imgFrame, (int(list_reid[j][3]), int(list_reid[j][1])) , (int(list_reid[j][4]),int(list_reid[j][2])) , (0,255,0), 10) #cv2.imwrite('outReid/'+temp_f[0]+'.png',imgFrame) flag_draw = True k = 0 j=j+1 #else: #cv2.imwrite('outReid/'+temp_f[0]+'.png',imgFrame) # cv2.imshow('Person-ReID', imgFrame) # cv2.waitKey(1) #else: #cv2.imshow('Person-ReID', imgFrame) #cv2.waitKey(1) #cv2.imwrite('outReid/'+temp_f[0]+'.png',imgFrame) if (flag_draw == True): font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(imgFrame,'True',(200,200), font, 4,(0,255,0),4,cv2.LINE_AA) k = k + 1 if (k > 15): flag_draw = False k = 0 #cv2.imwrite('outReid/'+temp_f[0]+'.png',imgFrame) cv2.imshow('Person-ReID', imgFrame) cv2.waitKey(1) #print(e[0]," , ", e[1], "\n") #i=0 #for x in list_bool: # if x==True: # print(files[i],list_pred[i],list_bool[i]) # i=i+1 #test_images = np.array([image1, image2]) #test_images2 = np.array([image2, image1]) #feed_dict = {images: test_images, is_train: False} #feed_dict2 = {images: test_images2, is_train: False} #print(feed_dict) #prediction = sess.run(inference, feed_dict=feed_dict) #prediction2 = sess.run(inference, feed_dict=feed_dict2) print("=======================Prediction List=======================")
def main(): if FLAGS.mode == 'test': FLAGS.batch_size = 1 learning_rate = tf.placeholder(tf.float32, name='learning_rate') images = tf.placeholder( tf.float32, [2, FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3], name='images') labels = tf.placeholder(tf.float32, [FLAGS.batch_size, 2], name='labels') is_train = tf.placeholder(tf.bool, name='is_train') global_step = tf.Variable(0, name='global_step', trainable=False) weight_decay = 0.0005 tarin_num_id = 0 val_num_id = 0 if FLAGS.mode == 'train': tarin_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'train') elif FLAGS.mode == 'val': val_num_id = cuhk03_dataset.get_num_id(FLAGS.data_dir, 'val') images1, images2 = preprocess(images, is_train) print('Build network') logits = network(images1, images2, weight_decay) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) inference = tf.nn.softmax(logits) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9) train = optimizer.minimize(loss, global_step=global_step) lr = FLAGS.learning_rate os.environ['CUDA_VISIBLE_DEVICES'] = '0' gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir) if ckpt and ckpt.model_checkpoint_path: print('Restore model') saver.restore(sess, ckpt.model_checkpoint_path) if FLAGS.mode == 'train': step = sess.run(global_step) for i in xrange(step, FLAGS.max_steps + 1): batch_images, batch_labels = cuhk03_dataset.read_data( FLAGS.data_dir, 'train', tarin_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = { learning_rate: lr, images: batch_images, labels: batch_labels, is_train: True } sess.run(train, feed_dict=feed_dict) train_loss = sess.run(loss, feed_dict=feed_dict) print('Step: %d, Learning rate: %f, Train loss: %f' % (i, lr, train_loss)) lr = FLAGS.learning_rate * ((0.0001 * i + 1)**-0.75) if i % 1000 == 0: saver.save(sess, FLAGS.logs_dir + 'model.ckpt', i) elif FLAGS.mode == 'val': total = 0. for _ in xrange(10): batch_images, batch_labels = cuhk03_dataset.read_data( FLAGS.data_dir, 'val', val_num_id, IMAGE_WIDTH, IMAGE_HEIGHT, FLAGS.batch_size) feed_dict = { images: batch_images, labels: batch_labels, is_train: False } prediction = sess.run(inference, feed_dict=feed_dict) prediction = np.argmax(prediction, axis=1) label = np.argmax(batch_labels, axis=1) for i in xrange(len(prediction)): if prediction[i] == label[i]: total += 1 print('Accuracy: %f' % (total / (FLAGS.batch_size * 10))) ''' for i in xrange(len(prediction)): print('Prediction: %s, Label: %s' % (prediction[i] == 0, labels[i] == 0)) image1 = cv2.cvtColor(batch_images[0][i], cv2.COLOR_RGB2BGR) image2 = cv2.cvtColor(batch_images[1][i], cv2.COLOR_RGB2BGR) image = np.concatenate((image1, image2), axis=1) cv2.imshow('image', image) key = cv2.waitKey(0) if key == 1048603: # ESC key break ''' elif FLAGS.mode == 'test': images_prob = {} test_query = file_name("/workspace/zyf/person_data/test_query") test_reference = file_name( "/workspace/zyf/person_data/test_reference") image1 = cv2.imread(test_query[1]) image1 = cv2.resize(image1, (IMAGE_WIDTH, IMAGE_HEIGHT)) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image1 = np.reshape( image1, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) for i in range(len(test_reference)): image_reference = cv2.imread(test_reference[i]) image_reference = cv2.resize(image_reference, (IMAGE_WIDTH, IMAGE_HEIGHT)) image_reference = cv2.cvtColor(image_reference, cv2.COLOR_BGR2RGB) image_reference = np.reshape( image_reference, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float) test_images = np.array([image1, image_reference]) feed_dict = {images: test_images, is_train: False} prediction = sess.run(inference, feed_dict=feed_dict) images_prob.setdefault(test_reference[i], (prediction[0])[0]) images_sorted = sorted(images_prob.iteritems(), key=lambda asd: asd[1], reverse=True) print(images_sorted[0:15]) print(test_query[1]) # if __name__ == '__main__': # tf.app.run()